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Abstract

Simulation is a complex task with many research applications - chie�y as a research tool,

to test and evaluate hypothetical scenarios. Though many simulations execute similar

operations and utilise similar data, there are few simulation frameworks or toolkits

that allow researchers to rapidly develop their concepts. Those that are available to

researchers are limited in scope, or use old technology that is no longer useful to modern

researchers. As a result of this, many researchers build their own simulations without

a framework, wasting time and resources on a system that could already cater for the

majority of their simulation's requirements.

In this work, a system is proposed for the creation of a scalable, dynamic-resolution

network simulation framework that provides scalable scope for researchers, using mod-

ern technologies and languages. This framework should allow researchers to rapidly

develop a broad range of semantically-rich simulations, without the necessity of super-

or grid-computers or clusters. Design and implementation are discussed and alternative

network simulations are compared to the proposed framework. A series of simulations,

focusing on malware, is run on an implementation of this framework, and the results

are compared to expectations for the outcomes of those simulations. In conclusion, a

critical review of the simulator is made, considering any extensions or shortcomings

that need to be addressed.
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1 Introduction

The �eld of network simulation is one of a variety used in networking research. Simu-

lators can be used for prototyping, testing and validating theories as well as recreating

events for further study.

However network simulators used in research require careful development. If re-

searchers construct a network simulator in every area in which they perform research,

much of their e�orts will be wasted. However, existing simulators may not always

support the research that could make use of them. Furthermore, simulators which are

incapable of simulations at the scale of the massive world-wide network, the Internet,

are unusable for the broad body of researchers whose research focuses on the Internet

on a regular basis.

The solution to this problem is to develop simulators capable of Internet-scale sim-

ulation, that use a robust set of interchangable modules for simulation that can be

developed rapidly and easily. Through this, modules may be developed to create a rich

library of simulated network components, available to researchers and other users of

the simulator.

This research proposes the development of such a simulator, and suggests a selection

of tests to determine whether the detailed simulator ful�ls the expectations placed

upon it. Malware has been selected as the core subject of these tests.

The simulator shall be developed, then critically evaluated using the results of the

tests as a basis for determining its e�ectiveness.

1.1 Introduction of Concepts and Terms

Before discussion of domain speci�c research can be undertaken, concepts and terms

that are imperative for understanding must be de�ned in order to avoid confusion.

Concepts signi�cant to this research are de�ned below - speci�cally, simulation, and

the software that executes simulations, simulators, with an emphasis on two speci�c

sub-classes of simulators: network simulators and robust simulators, and �nally the

subject of the simulations in this research, malware.
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Simulation

The de�nition of simulation, according to the Oxford English Dictionary Online (2008),

is:

�The technique of imitating the behaviour of some situation or process

(whether economic, military, mechanical, etc.) by means of a suitably anal-

ogous situation or apparatus, esp. for the purpose of study or personnel

training�.

Simulation is the act of preparing for or analysing a scenario by creating virtual equiv-

alents to all the tangible and intangible objects involved in it. The simulation then

follows a series of activities similar to those anticipated. After some period of virtual

time has `elapsed', the system is then reviewed and the changes noted. This allows

researchers to determine likely outcomes to complex scenarios in which many variables

and objects interact with the system.

Simulator

The de�nition of a simulator, or simulation framework, from the Oxford English Dic-

tionary Online (2008), is:

�An apparatus designed to simulate the behaviour of a more complicated

system; esp. one for training purposes that simulates the response of a

vehicle, craft, or the like, having a similar set of controls and giving the

illusion to the operator of responding like the real thing.�

Simulators in the context of computing are programs that can execute simulations on

a computer. They accept a simulation as a series of variables and apply a given set

of alteration rules to it. Once the simulation has been changed by the simulator, the

variables are then reviewed. These variables can then be used to make deductions

about the states of a real system once certain real transitions a�ect it.

Network Simulators

A network simulator is a speci�c implementation of a simulator (de�ned above), focus-

ing primarily on computer networks. They are used for a wide variety of simulation

models (including malware research, network tra�c research, and new protocol test-

ing). Because of the broad range of possible simulations, many simulators with a wide

variety of features are available.
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Robust Simulators

In this research, robust simulators are de�ned as simulators with as few restrictions

as possible placed on simulations. This allows simulation modelers a large amount of

freedom in adding semantic content to their models. The robustness of simulations is

typically in opposition to the e�ciency of the system (both in terms of memory and

processor costs), as the process of allowing rich semantic content to be added to the

elements of the simulation results in large overhead costs.

Implicit in the concept of a robust simulation is extensibility: robust simulators

allow modelers to extend and alter the components in the simulator in order to better

represent those components as they are in the real world.

The ns-21 and OpNet2 network simulators are both semantically rich simulators, and

Fall and Varadhan (2008) explains that ns-2 is extensible using a combination of the

programming languages C and Tcl to add or change components.

Simulator Scalability

In this research, simulator scalability is de�ned as the ability of a simulator to simulate

a large quantity of modeled objects (or a very detailed object) within limited execution

time and limited memory constraints. This may include abstraction for e�ciency and

distribution to increase capacity.

Malware

Malware is de�ned by the Oxford English Dictionary Online (2008) as,

�Programs written with the intent of being disruptive or damaging to (the

user of) a computer or other electronic device; viruses, worms, spyware,

etc., collectively.�

Malware is a portmanteau word combining �malicious� and �software�. Malware is a

broad term, spanning a range of dangerous software. It typically utilises some form

of communication (be it via manually transferred disks, or over a network) to transfer

software to vulnerable computers. Once this is done, the e�ects vary depending on the

purpose of the software.

Famous examples of malware include the Morris worm (the �rst Internet �worm�, a

form of rapidly propagating malware), the Blaster worm, and the I Love You virus.

The testing of the simulator designed and implemented as part of this research was

primarily modeled around the spread of malware, with a focus on Internet Worm re-

search. Much research has been generated concerning malware, speci�cally in analysing

1http://www.isi.edu/nsnam/ns/
2http://www.opnet.com/
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the nature of various forms and implementations of malware and attempting to defend

successfully against those forms.

The simulations that model malware that were run can be found in Chapter 6.

1.2 Problem Statement

Simulation is a useful research tool that can help in the development and validation of

models. An important aspect that is lacking in many simulator systems is the necessity

of extension and expansion in the form of robustness or generality, especially at the

Internet scale. This results in the development of once-o� simulations for any research

which takes place that is of an Internet scale, and is outside the scope of existing

components or component semantics.

This can be considered wasteful, as an entire simulator framework must then be de-

veloped to be used for a small subset of simulations, as large, well-developed simulators

are ignored due to a lack of capability.

1.3 Proposal: A Robust Network Simulator

This research proposes a solution to the challenge of large-scale robust and general

simulator development. The development of a simulator solution that can make use

of these traits o�ers value in its ability to provide this rapid simulation development,

while allowing for a rich existing component set and an easily extensible framework for

further component development. This addresses the problem stated in Section 1.2.

In introducing a complex system such as this, it is essential to initially state and

continually review the work with two major considerations: the value of the system to

the user, and the capabilities expected of such a system.

1.3.1 Value

A robust network simulator system has many uses, depending on the nature of the

user. Particularly in the case of robust simulators, where the simulation domain is

large, the system can be used by a wide variety of computer users for a broad range of

tasks. Users that can expect to �nd the maximum use from such a system are system

or network administrators, software developers that will interact with networking at

some level, and researchers.
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For System Administrators

System or network administrators can use robust network simulators in designing their

networks, testing when they encounter problems, and in preparing for or countering

malicious activity that may in�uence their networks. Examples of research that makes

use of simulations for the purpose of protecting or optimising networks include Zou

and Gong (2004) and Baccelli and Hong (2003).

Through the use of a simulator, they may determine the e�ects of change, model

already-existing changes to see what e�ect they have, and prepare for scenarios on their

networks that they anticipate occurring.

For Network Software Developers

Software developers that author programs that interact with a network can make use

of a simulator to fully determine the e�ect their programs will have on a network. By

simulating a network with their software running, they may be able to �nd deadlocks,

tra�c problems, possible exploits and test problems in their code when networks are

not structured or operating in the way in which they initially anticipated.

In Castaneda et al. (2004) the authors devise a system for countering Internet worms,

and use simulation to determine its e�ectiveness.

For Researchers

Researchers use many simulators already, such as ns-2 and SSFNet (detailed in Section

2.6) in order to test hypotheses and generate data for conjectures. Robust simulators

allow a single simulation system to be used for a wide variety of simulations that a

researcher might require. By reducing the number of simulator frameworks, researchers

can use a single set of skills, knowledge and code for their work, speeding development

and simplifying their work.

1.3.2 Capabilities and Properties

A complex system such as a simulator can be created in a variety of ways. When

several con�icting options in development are being considered, it is important that

clear priorities are established so that the resulting system performs optimally. With

this in mind, the following capabilities and properties are necessary in the system:

Scalable

The simulator must be scalable. Without scalability as a core property of the system,

simulations will be strongly restricted to a �nite quantity of semantic meaning, resolu-
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tion, or addressable simulated objects in the models, or the basic system requirements

will have to be incredibly large. While keeping scalability in mind, it is also important

to consider the trade-o� of optimisation to accuracy. Accuracy is typically lost when

e�ciency is improved in systems, but in the case of simulators that require highly

accurate results, this should be avoided at all costs.

Scalability can be mitigated by distributing the execution of a simulation, however

the goal of this work is for robust network simulators to operate on single hosts.

Arbitrary Resolution

Because of the varying needs of users (shown in Section 1.3.1), the resolution of a

network simulator needs to be variable. As part of the concept of a robust network

simulator, it is imperative that broad concepts (such as a `worm', or even `the Internet')

can be modeled as an individual entity for users with high-level simulation concepts.

It is also necessary that very low-level concepts (such as individual packets, or even

voltages in cables) be able to be modeled, for the use of researchers and others who

need to explore networking at that level.

Though it is not necessary, it should also be possible within simulations to be able to

change resolutions. For example, a conceptual `network' object in a simulation should

be able to be broken into a variety of `host' objects as necessary. This is a complex

task, and should not be a required aspect of a simulation, but rather an optional feature

should the modeler require it.

Semantically Scalable

Modeled objects within the simulation should be able to contain an arbitrary number

of properties and associated values. It should also be possible for objects of a similar

type to contain di�erent amounts of semantic information - some objects in the system

of a certain type should be able to be simply de�ned, while others should be complex

and have a great deal of associated information.

Distributable

Though it must be able to run simply on a single system, the option of distributing

the execution and memory load must be available. Because of the necessity of scale,

mentioned above, very large networks with large quantities of semantic content are

possible objects of simulations. The memory and processor requirements for such

networks could easily become large enough that single-computer simulation is no longer

feasible. In such a case, the simulator should be designed with distributed or grid

computing in mind, to take advantage of large computing farms or clusters.
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1.4 Goals

In order to guide this research, a number of goals need to be stated and revisited as

development takes place. These will serve to keep the research within useful boundaries,

as well as giving an absolute set of outcomes to be achieved by the end of the research.

These goals are listed here, with justi�cation:

1.4.1 Recommendations

A set of recommendations for development of robust simulators (similar in design to

the simulator described in Section 1.3) should be detailed. These should cover the

requirements of such a simulator, as well as displaying research that might aid in

development, and expanding on that with practical development guidelines.

1.4.2 Simulator

As a proof-of-concept, a simulator should be developed using the recommendations

from Section 7.2.1. This simulator must ful�ll the criteria stipulated in the recom-

mendations, and use the advice the recommendations give. It should be documented,

starting at the development stages and continuing through to its practical uses.

1.5 Research Methodology

In order to properly develop a solution to the problem statement in Section 1.2 and

thus meet the goals in Section 1.4, it is imperative that a proper research methodology

is followed.

A review of research (both current and dated) should take place and will be men-

tioned in Section 1.5.1. Experiments on the proposed simulator should be run to

determine the e�ectiveness of the simulator for modeling networking and malware, and

is mentioned in Section 1.5.2.

1.5.1 Literature Review

A review of the literature on the subjects that in�uence this research must take place.

Speci�c areas that will require research include simulation (directly, with research on

simulation itself, and indirectly, with research that makes use of simulation as a research

technique), networking and malware.

This literature review can be seen in Chapter 2.
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1.5.2 Experiments

Simulations should be developed (conceptually initially, then programmatically), then

executed upon the simulator developed as part of Section 7.2.2. The simulations should

thoroughly test the simulator, particularly in terms of robustness (its ability to repre-

sent a broad set of concepts), e�ciency (its ability to complete simulations in reason-

able periods of time), scalability (its ability to represent very broad concepts accurately

while maintaining e�ciency) and accuracy (the problem domain simulated should ap-

proximately match observed data).

The experiments used in this research are detailed in Chapters 5 and 6.

1.6 Document Overview

In this chapter, we have reviewed the problems inherent to malware simulation, and a

simulator designed for rapid simulation modeling has been proposed.

In Chapter 2, available textual resources are discussed, focusing on texts that span

the areas of malware, simulation, and networking.

In Chapter 3, design considerations and implementation details for the proposed

simulator are covered.

In Chapter 4, the design of simulations (on a more generic level) are discussed. Pro-

totype simulations that were tested are used to show challenges that were experienced

in the development process, and Internet worms are introduced as the core subject of

simulation.

Chapter 5 introduces simulations, simulating network fundamentals.

Chapter 6 continues simulation, covering Internet worms and more advanced malware

simulations.

Finally, the document is drawn to a close in Chapter 7.
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2 Literature Review

2.1 Introduction

Constructing a simulation framework capable of large simulations and that can serve

a variety of purposes in research is a non-trivial problem - Paxson and Floyd (1997)

entitled their paper �Why We Don't Know How to Simulate the Internet�, and detail

these challenges.

As the core concept of this work deals with the production of a computer network

simulator, it is imperative that a deep understanding of the workings of the Internet

be available. Section 2.2 considers some literature on computer networking (at a broad

general level) as it pertains to this research, focusing on networking and the Internet

as subjects of simulation.

Section 2.3 continues to consider literature regarding networking simulation, focusing

on present works that use simulation as a research tool. Where simulation has been

used in research, its value is considered and noted for use in development.

In Section 2.4, Internet worms and other forms of network-propagating malware are

discussed. Network security is a common goal of research, and could be used as a focus

for a network simulator.

Section 2.5 considers research on Internet Worm simulation, focusing on simulation

used for understanding the malware and Internet events considered in the previous

section.

Before development can begin, the paradigms, bene�ts and drawbacks present in

current simulation frameworks need to be extracted and considered. Where aspects

of these simulators allow for broad, e�cient simulation, they should be examined and

recorded for later use. This evaluation of existing network simulators takes place in

Section 2.6, concluding the chapter.

2.2 Networking and the Internet

Before any development of network simulators may take place, an understanding of

the fundamentals of computer networking is required. In this section, the fundamental
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notions of modern networking and the Internet are considered. Thereafter, some more

recent research into the way modern networks operate is mentioned and discussed.

2.2.1 History of the Networking and the Internet

According to Leiner et al. (1999), the Internet was �rst mentioned by J. C. R. Licklider

of MIT in Licklider and Clark (1962), and was developed at DARPA and commissioned

by the United States of America's Department of Defense (DoD). Initially termed the

�ARPANET�, it grew rapidly, with an increasingly large body of researchers working to

improve the communication protocols. In 1972, ARPANET was publically presented at

the International Computer Communication Conference (ICCC), and electronic mail

(E-mail) was introduced.

Between 1973 and 1976, Vint Cerf was contracted by DARPA to develop and ma-

ture the TCP/IP protocols at Stanford. Signi�cantly, according to Zakon (2006), the

Department of Defense declared the TCP/IP protocol suite to be their standard pro-

tocols. This resulted in widespread adoption of the protocols, laying the foundations

of the modern Internet.

The Internet grew out of ARPANET, and the modern protocols that are still used

today were introduced - the Internet Protocol (IP), detailed in Information Sciences In-

stitute (1980a), and the Transmission Control Protocol (TCP), detailed in Information

Sciences Institute (1980b). These take advantage of the layered nature of networking

protocols, de�ned in International Telecommunication Union (1994).

The �Open System Interconnect� (OSI) stack is introduced in International Telecom-

munication Union (1994), and introduces the idea of layered networking protocols to

allow for modularity. By keeping the various component parts of networking separated

into layers, it is possible to transparently �wrap� high level communication in lower level

protocols which hide the speci�c communication details. From the opposite perspec-

tive, lower level protocols �wrap� higher level protocols as data, ignoring the meaning

of the information they contain, acting entirely as the communication medium.

The OSI stack can be visualised as shown in Figure 2.1, presenting the communica-

tion protocols of the Internet as a series of layers. The higher layers are �wrapped� in

the lower layers which describe the form in which communication takes place.

2.2.2 Networking Research

Due to the large quantities of information that are communicated on the Internet,

contention for bandwidth is a common problem: Jacobson (1995) introduces their
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Figure 2.1: OSI Stack

research by stating: �Computer networks have experienced an explosive growth over the

past few years and with that growth have come severe congestion problems�. Because of

this, much research has taken place to determine the best or fairest way of distributing

available communication resources: Baccelli and Hong (2003), Dutta et al. (2002) and

Feldmann et al. (1999) are some examples of this.

A common theme in this research is the use of simulation to investigate proposed

solutions to communication di�culties. Thus, a common theme in computer network

simulation research is modeling bandwidth, as bandwidth and congestion research will

require this property of networking to be simulated. Discussed below are papers that

discuss networking without the use of simulation, but that include representational

models to emphasise the validity of their research.

Savage et al. (1999) point to the ine�ciencies of modern IP. Discussing the initial

assumptions made about Internet routing, they show that in many cases more e�cient

routes exist between ASs (or Autonomous Systems, a term for a group of networking

resources controlled by a single entity) that could be exploited, but that are not chosen

due to the distance between nodes.

They name four key ine�ciencies in the present means of routing:

• Poor routing metrics

• Restrictive routing policies

• Manual load balancing
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• Single path routing

They propose an alternative model for routing, which they name Detour, which in-

telligently chooses routes between hosts, suggesting that it would result in signi�cant

improvements in performance over the Internet.

The Detour model could be modeled using the proposed simulation, either as a

representational prototype (See Section 2.3.2), or to test its e�ciency. Any resulting

trade-o�s and side-e�ects, if any, could be observed prior to its deployment, resulting

in a more thoroughly tested model and a greater degree of certainty of its success.

Baccelli and Hong (2003) use a ��ow� abstraction of tra�c to better model band-

width. They go on to use physics equations from the �eld of �uid dynamics to model

the interactions between TCP and UDP �ows, and use the network simulator ns-2

(discussed later in this chapter) to validate their models.

Zhou and Mondragon (2003) deal primarily in statistical modeling of the Internet.

The authors discuss the `Rich Club' phenomenon of the Internet - how nodes in a

network that are already well connected will gain the majority of new connections,

while less popular nodes gain fewer and fewer. After doing this, they discuss other

popular models of the Internet (Inet-3.0 (Winick and Jamin (2002)), Barabasi-Albert

(Barabasi and Albert (1999)), and the Generalized Linear Preference (Bu and Towsley

(2002)) models), and compare it to their own alternative, the Interactive Growth model.

In closing, they state that they "expect the model to be used in simulation-based

research for the Internet tra�c engineering." In their own research, however, simulation

could be used as a means of both testing and validating their proposed model.

Comparing the statistical modeling of Zhou and Mondragon (2003) to the represen-

tational form of simulation modeling allows a researcher to understand the di�erences

and important roles that each type �lls in research - and these two forms of network

simulation are examined in the following section.

2.3 Network and Internet Simulation

There is a broad body of literature in which network simulations have been used to

test hypotheses, such as those mentioned in Section 2.2. In this section, papers that

are relevant to the research presented in this thesis are detailed and commented upon.

In Sharif et al. (2005), it is stated that simulations that take into account packet-level

models of networking and worm propagation more accurately model the complexities

of worms than those that use analytical means to do so. While packet-level models

are more detailed, they require signi�cantly larger computational overhead than those

using analytical models. While the paper will be discussed in more detail in Section

2.4, the di�erences between analytical (and mathematical) models for simulation, and
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packet-based (or representational) models are underlined in this paper. With this in

mind, the remainder of this section is split into Section 2.3.1 on papers that consider

analytical simulation models and Section 2.3.2 on papers that consider representational

simulation models.

2.3.1 Mathematical Models

Salamatian and Vaton (2001) focus on mathematically modeling the state of a network

using Hidden Markov Models (HMMs). HMMs are equations from the �eld of statistics,

which make inferences about unknown states in systems by analysing the outputs of

those systems. This paper uses packet delay and loss to make inferences about the

states of communication channels (in this case, very simpli�ed states - congested and

non-congested - are used).

This paper presents interesting models of the Internet, and shows a means of pro-

jecting hard-to-acquire knowledge from trivially acquired data. Using information and

models like those used in this paper, it is possible to acquire data about incoming com-

munication and derive models about the most likely states of massive, hard to know

systems (like the Internet).

In �Mathematical modeling of the Internet�, Kelly (2001) discusses the rate of packet

�ow in networks. The author outlines mathematical models and quality of service

systems for the Internet, speci�cally focusing on TCP.

The mathematical models shown in this paper could be representationally simulated

by altering the TCP portion of a simulation system and observing the changes in the

overall network that is simulated. By doing this, the e�ectiveness and e�ciency of

the new system can be measured. Once the bene�t of this new technology can be

measured, the real value can be used for more accurate decision-making.

Baccelli and Hong (2003), Zou et al. (2002) and many other researchers begin their

research by proposing a mathematical or statistical model for the simulation of com-

puter networks. They then go on to validate their models using a representative network

simulator such as ns-2 or SSFNet.

2.3.2 Representational Models

In Baccelli and Hong (2003), the introduction states that, �It is well known that the

packet level simulation of TCP over IP with tools like ns-2 or Opnet is currently not

possible for large populations of �ows and/or large numbers of links/routers�. This

points to the necessity of dynamic abstraction in the development of a simulator - the

necessity of a simulator to be able to represent various degrees of abstraction, and if

necessary switch between simulating at those di�erent levels.
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This paper dealt speci�cally with routing, de�ning tra�c in terms of �ows - an

abstract concept used to describe TCP connections and other form of transactional

communication.

In Bai et al. (1999), the authors use a popular simulator (SSFNet, detailed further

in Section 2.6) to simulate the e�ect of two protocols on a wireless network. They

proceed to optimise the TCP sliding window for wireless networks by observing the

errors that occur due to the con�icts caused by the two protocols (TCP and ARQ, a

radio link-layer protocol). This demonstrates the necessity of components that support

the simulation of wireless networking in a simulator, expanded upon in the proceeding

work.

Chen et al. (2002a) describe a novel idea for distributing routers in an ad-hoc wire-

less network to minimise power use. Their design operates by ensuring that every

contributing ad-hoc host is capable of routing to the Internet, while still using the

minimum number of routing nodes, periodically changing routing nodes to ensure fair

distribution of routing load (with a priority on overall connectivity). They use the

ns-2 simulator to demonstrate the e�ectiveness of the system. This demonstrates a

further feature necessary in network simulation - the ability to add (without signi�cant

alteration to the simulator) additional `layers', requirements or attributes to parts of

the system - in this case, `physical distance' is an important part of the simulation.

Dyer and Boppana (2001) con�rm the necessity of being able to represent `physical

distance' in a simulator that is robust: the authors use the ns-2 simulator to simulate

the performance of TCP, evaluating a variety of routing protocols available for wire-

less or mobile computing. They performed the simulation using a 1000x1000 grid for

location of nodes - indicating that modern research requiring robust network simula-

tors include wireless networking as a part of their simulator's capabilities. This could

be modeled in a simpler manner with a simulator that is capable of containing loca-

tion attributes to their modeled hosts - distance can be calculated easily once physical

coordinates of the nodes are available.

In Cowie et al. (1999), the future plans and open problems that they describe are:

• Visualisation challenges

• Tools for generation and validation of network topologies

• Scalable data collection facilities

• Multiresolution tools for sensitivity analysis

All of these are signi�cant problems to be considered when developing simulators. Visu-

alisation can occur either as during- or post-processing, and gives the user an easy and

simple way of determining the state of the simulation. Tools for generating networks
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allow for rapid prototyping and simulation development. Data collection facilities al-

low the system to determine how patterns (such as tra�c, distribution of node type,

etc.) should be modeled using real data obtained from a network. Multiresolution

simulations are discussed more thoroughly in Huang et al. (1998), and provide a means

of simulating broadly (and e�ciently) using abstractions while still maintaining a high

degree of accuracy.

Dutta et al. (2002) discuss means of rapidly designing networks using scenario pre-

�ltering - a technique that allows for e�cient simulations, even though they are com-

plex. This is a technique that could be adapted for use by simulators that intend to

do massive- (e.g. Internet-) scale simulation.

By excluding parts of the network dependant on the amount of bandwidth they are

simulated as transferring, it is possible to limit simulation to only `interesting' parts of

the network, making the simulation process more e�cient. This could, however, result

in a loss of accuracy.

Dutta et al. (2002) state:

�Packet level simulators, such as ns-2, simulate the network as a series of

discrete events, requiring a number of events proportional to the number

of packets generated by the network. Although simple simulations can

be run quite quickly, simulating scenarios with many nodes and at high

tra�c rates can easily become quite time consuming. Understanding the

behavior of the network may require many scenarios with alternate tra�c

or con�guration choices. Often many of these scenarios are not interesting,

either they are very overloaded (and so not a sensible operating point), or

they are very underloaded (and so not providing insight into the network's

performance).�

This underlines the importance of extracting the signi�cant events in a simulation, and

ignoring those that are not important.

Farber et al. (1998) analyse the dial-up tra�c patterns at the University of Stuttgart,

using data gathered, speci�cally focusing on dial-up holding times, login times, tra�c

load and interarrival times. While the technology used for this paper is dated, the

concepts (statistical modeling, using gathered data for simulation modeling) remain

relevant.

The authors e�ectively use data gathered to generate a statistical model and evaluate

performance. This is signi�cant, because statistical models must play an important role

in simulation development. If an analytical model is presented for testing, a simulator

must be capable of using its available components to best representationally model the

functions presented.
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In Feldmann et al. (1999), models of user and network tra�c are tested for accu-

racy using the ns-2 simulator. The authors use low-level protocol variables in their

simulation. Simulators should be capable of altering variables at a low level (such as

changing parts of a low-level protocol) easily, and see the e�ects of the change at higher

level (such as seeing high-level protocols which rely on the a�ected low-level protocols

changed). This can be seen again in Joo et al. (1999), where common assumptions

of tra�c patterns used in simulation are challenged. By using two di�erent cases of

underlying bandwidth patterns, they show the di�ering e�ects that could be observed

in higher-level protocols.

As stated in Section 1.3.1, an important use of simulators is in prototyping and pre-

release testing. In Garetto et al. (2001), a new form of TCP performance measurement

is discussed, and ns-2 is used for simulation to test the quality of the measurement sys-

tem. They base their research on previous work which successfully demonstrated the

positive e�ects of closed queueing networking for measuring TCP connection perfor-

mance, but which had failed to perform any simulation of this change in measurement.

This indicates the necessity of simulators as tools for prototyping new concepts, as

well as tools for validating existing research which uses analytical models instead of

representational simulation.

In Hanle and Hofmann (1998), three alternative protocols for multicast tra�c on

the MBONE network are compared, and simulation comparisons are made on ns-2.

The paper comments on the robust set of existing components (particularly protocol

forms) in ns-2, and proceeds to use these components with an added testing layer of

these multicast protocols. Simulators should have prebuilt component sets, while still

allowing users to develop their own components for speci�c testing purposes.

Henderson et al. (1998) test and simulate various hypotheses about TCP congestion,

notably imposition of a constant bit-rate policy on a network (and its e�ects on a long

return-trip time connections). This shows the necessity of packets in a simulation -

while it is obvious that nodes and the connections between them need to be detailed,

this details the necessity of containing TTL (i.e. distance) and time information in

order to adjust the behaviours of nodes for e�ciency.

In Hofmann et al. (1999), improved means of caching streaming media on the Inter-

net are proposed. Several techniques grouped under an architecture named `SOCCER'

(Self-Organizing Cooperative Caching Architecture) are suggested. They use ns-2 to

prototype this architecture. The suggested techniques and components in the frame-

work are:

• Stream Segmentation (sending part of the stream, not all of it at once)

• Dynamic Caching (if a cache request for an already streaming object is made,
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send with the current connection and send the di�erential `patch' afterwards)

• Self Organizing Cooperative Caching (by intelligently and dynamically coupling

caches, they can send objects to various receivers e�ciently)

These components are all modi�cations of the node component, and can be grouped

under the 'sending' and 'receiving' parts of that component. This outlines the necessity

of those components being modular or at least easily editable if the context of the

simulation requires it.

Modeling the topology of the Internet is a fundamental and non-trivial task needed

in an Internet simulator. In Jeremie (2004), methods for modeling the topology of the

Internet are discussed.

Initially, the basics of TCP/IP communications are discussed, with a focus on rout-

ing, inter-host communication and the present organisation of the Internet. This is

followed by a discussion of several existing projects, covering network topology dis-

covery projects and statistical model generators. It then goes on to cover currently

accepted properties of the Internet.

The core of the paper regards the use of CAIDA's Skitter data (Cooperative Associ-

ation for Internet Data Analysis (2008a)), focusing initially on the visualisation of the

data, then moving on to the statistical analysis and discussion of the de�nition and

modeling of Internet routes.

In this paper, Paxson and Floyd (1997) discuss the di�culties of massive-scale net-

work simulation. The chief di�culties that they describe are:

• The heterogeneity of the Internet, speci�cally:

� The di�erent connection types

� The di�erent types of congestion found

� The di�erent network topologies and link properties

� The di�erent protocols used

� The di�erent applications which are run on the various nodes

• The constant change in the nature of the Internet, e�ectively making it one 'large,

moving target'

• The massive scale of the Internet, where events which are rare at the local level

occur often at some point in the broader network

They then go on to suggest that the best way to cope with these problem is to focus on

the system's invariants: certain facets of the Internet, such as statistical distributions

of connection regularity, packet arrival, and the log-normal distribution of connection
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size and time. They also point out that it is possible to derive some parameters of

the Internet: however, no single simulation can provide them. As Paxson and Floyd

(1997) say: "If you run a single simulation, and produce a single set of numbers (e.g.,

throughput, delay, loss), and think that that single set of numbers shows that your

algorithm is a good one, then you haven't a clue."

Finally, they discuss the Vint project, an attempt at a successful simulation.

Network simulation su�ers from scaling and granularity concerns: if a network is too

highly detailed, performance impracticalities arise. However, high-level networks fail

to include details that granular simulations can perform. A solution to this problem is

proposed in Rao and Wilsey (2001): multi-resolution network simulations.

Multi-resolution network simulations allow for levels of abstraction and detail to be

introduced into a simulation such that no uniformity in granularity level is required.

This powerful tool allows networks to be simulated with varying amounts of detail, yet

still allows practical communication between these components.

Combining this with Dynamic Component Substitution (DCS), simulations can be

designed that change resolution at run-time or at compile-time - simulations that allow

dynamic abstraction to compensate for load, to allow minute details to be modeled in

certain sections of the simulation and have these a�ect the broad generalisations that

are running in other areas of the simulation.

2.4 Internet Worms and Malware

In �Aggressive Network Self-Defense� by Wyler et al. (2005), several authors relate con-

troversial short �ctional accounts that argue and explain the ethics behind the concept

of �strikeback� - using aggressive or passive tactics to compromise the computers of

attackers, forcing them to cease any malicious activity.

One of the forms strikeback takes is a �helpful worm� - worms which make use of

backdoors left by other worms, to infect the system, delete the malicious worm, then

delete themselves after propogating and closing the backdoor. Helpful worms are a

form of malware countermeasure, and so are also detailed in the next section.

The idea that helpful worms can be used to counter malicious worms could be used

as a good test of a simulation system. Both worms would (initially) create a massive

amount of tra�c, and the relative success of each would be an interesting means of

measuring the e�ectiveness of the concept.

A theoretical construct that is similar to these worms is found in the paper �A

Predator-Prey Approach to the Network Structure of Cyberspace,� by Gorman et al.

(2004).

Zou et al. (2003) proposes a Dynamic Quarantine System that may help to slow
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worm propagation, based on the principle of `guilty until proven innocent'.

The system uses an unnamed anomaly detection system that guesses when network

activity from a host could be construed as being caused by a worm. Even in the case

of possible false positives, the system `quarantines' the packets that have been sent.

They are not received by the hosts that the system is defending - instead the packets

are held temporarily.

At this stage, the authors comment that in a truly secure system, a human supervisor

should inspect the activity in order to determine whether it is truly a worm, or merely

a false positive. The noted problem with this is that many hosts may be behaving in

a `worm-like' manner, and the length of time it would take for a person to inspect the

quarantine may result in loss of connectivity to critical or harmless systems.

Because of this, the �nal system introduced in this paper proposes simply holding

quarantined packets for a period of time, before �nally allowing them into the system.

Because of this, worm propagation is signi�cantly slowed, allowing human countermea-

sures to be developed in a reasonable time.

This system would be particularly useful in countering so-called `Warhol' or `Flash'

worms (discussed in Nazario (2003)) that spread at rates faster than any other kind of

worm found so far.

2.4.1 Worm Countermeasures

Zhang et al. (2004) propose a system of quarantines to counter worm propagation.

While they do not dwell on the details of the quarantine, they use the standard

`Susceptible-Infected-Removed' Markov model to show the advantage of a quarantine

system in reducing the speed at which a worm can propagate. This shows an interesting

means of host classi�cation when worms are simulated - hosts can easily be classi�ed

in one of these three categories, and host behaviour can de�ned in terms of which state

it is currently in.

In Coull and Szymanski (2007), it is recommended that a worm countermeasure

be installed over a large portion of the Internet. It continues to describe how the

countermeasure system would use a reputation system for analysis of worm attackers.

The apparent challenge in the implementation of this is the installation of a malware

countermeasure package on such a massively heterogeneous Internet, controlled by a

diverse range of interests. This would appear to make this recommendation untenable.

Furthermore, its e�ect would only be signi�cant if these portions were towards the core

of the Internet, were speed and bandwidth are priorities - scanning for worm packets,

however e�ciently done, would cause a noticeable e�ect on the Internet.
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Figure 2.2: Susceptible-Infected-Removed model

In terms of simulation, this paper suggests a home-grown simulation system. A

generic, robust simulator could not only perform similar simulations, but could easily

be extended for further testing in the domain. Reputation scores are a simple addition

to most simulations, and can be used to represent trusted or untrusted networks.

The use of anti-worms to counteract malevolent worms is a controversial example

of �Strike Back� (also mentioned in Wyler et al. (2005)). In Castaneda et al. (2004),

the authors state the major concerns, and cite some famous examples of anti-worms

that have been shown to have detrimental side-e�ects (notably Welchia). They then

go on to simulate the e�ects of an anti-worm. The simulations they run, however, are

analytical as opposed to representational - they use a series of mathematical models.

Their results show that anti-worms are not, at present, an appropriate solution to

malevolent worms, but are still an intriguing concept.

Using SSFNet, Briesemeister and Porras (2005) propose and simulate a method for

worm detection and countering. They use a broad catching strategy ('group defense

strategy') to ascertain the origin and signature of the worm, then rate-limit to slow

the spread. This could easily be simulated in a robust simulator engine (and has been,

see Section 4.2.4), particularly well if connection objects have been customised to more

accurately simulate rate limiting.

2.5 Internet Worms and Malware Simulation

Internet worms are an ongoing threat to the stability of the Internet - Castaneda et al.

(2004) describe Internet worms as �terrorizing the Internet for the last several years�.
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As a result, research is taking place to better understand worms, to prepare for them,

and to consider new forms of worms that might threaten the Internet. One of the tools

used in this research is simulation - it allows security developers and researchers to

prototype concepts safely, more accurately predict outcomes when additional e�ects

are added to a known system, and experiment with dangerous concepts without any

risk.

One project (in development) that is attempting to make use of massive-scale sim-

ulation for network security research is ISEAGE, developed by Iowa State University

Information Assurance Center (2008).

In this section, Internet Worm research that makes use of simulation is discussed,

along with research speci�cally aimed at challenges in Internet worm simulation devel-

opment.

Before any speci�c �real� Internet worms are studied, research that focuses on worms

conceptually is shown in Section 2.5.1.

This is followed by an overview of research on the Code Red vII worm, which has

received a lot of attention from researchers, in Section 2.5.2. Section 2.5.3 continues by

summarising the research on worms other than Code Red vII, and Section 2.5.4 consid-

ers the research about worms in general, without any speci�c focus on any individual

worm.

Finally, Section 2.5.5 considers worm simulators that are currently in use.

2.5.1 Mathematical Models of Worm Behaviour

Chen et al. (2002b) introduce a mathematical model of worm behaviour: The AAWP

or Analytical Active Worm Propagation model.

In this paper, Chen et al. (2002b) present a model of worms that randomly scan

through IP space, actively searching for hosts to infect. Factoring in `hitlists', or

initial lists that worms are seeded with for hosts that the author particularly wants

infected (whether they have high bandwidth, are known as exploitable, or for some

other reason), this paper presents the probability calculations of host infection by

neighboring nodes.

The authors spend some time comparing the AAWP model to the statistical model

that was �rst used for modeling worm spread, the Epidemiological model (). One of

the di�erences that is notable is the importance of discrete time in infections - a worm

does not start spreading until the host is entirely infected - a factor not taken into

account in the Epidemiological model. They then go on to parameterise their model

for simulating the Code Red vII worm.

This model is well suited to simulation - and as commented upon in Section 2.3.1, it

is important that simulators be capable of easily adapting a mathematical or statistical
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model into a representational one.

2.5.2 Code Red vII Worm

Wagner et al. (2003) summarise the authors' experiences simulating the Code Red

Internet Worm. They also open with an excellent argument for the creation of Internet

Worm simulations:

The bene�ts of predicting worm behaviour are numerous:

• Better understanding of the behaviour of worms observed in the past

• Estimations of a worm's threat potential

• Estimations of the impact of future worms on the Internet

• Basis of the design of detection mechanisms for worm spreading

• Determination of parameters relevant for worm characterisation

They then continue to explain di�erent methods for studying worms: mathematical

models, sandbox testing, study of observed data, and simulation.

Following this, they go on to detail the parameters they used for a simulation they

developed. They used two peer-to-peer networks as a measure of distribution of band-

width on the internet - as an example, because 32% of Napster's users connected at 64

kb/s, they assumed that 32% of the Internet did the same.

They then go on to run various simulations, focusing mainly on bandwidth and la-

tency measuring, and show the similarities between these simulations and the observed

results.

Zou et al. (2002) focuse on the Code Red Worm (speci�cally, Version 2) that was

in�icted upon the Internet in July 2001.

The authors propose that in order to statistically model the spread of the worm, two

factors need to be taken into account: from the pool of susceptible computers (S), with

some infected by the worm (I), computers can be rebooted, e�ectively moving them

back to the susceptible pool. Infected computers can also be patched or the worm

can be neutralised, removing them from the infected pool or susceptible pool into the

removed pool R.

Through the use of a simple McKendrick model (originally de�ned in Kermack and

McKendrick (1927)), the authors de�ne a series of equations that model the growth of

the Code Red Worm, taking into account the slowing of growth as the population of

pool S becomes saturated and moved into pool I. By using negative growth parameters

for susceptible hosts, positive and negative growth parameters dependent (respectively)

on the number of susceptible hosts and the number of removed hosts for the infected
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pool I, and a positive growth parameter for the pool of removed hosts, independent of

the number of hosts in either pool (as a host can be patched without being infected).

Possible extensions to investigate in this project are the separation of growth pa-

rameters for the removed pool - people may be more likely to patch if their hosts are

infected.

When the Code Red vII worm was �rst discovered on the Internet, one noted side-

e�ect was an increase of BGP routing tra�c on the Internet. In Liljenstam et al.

(2002), the possible reasons for this are explored.

The simulator they use is at a high level, referring to ASs or Autonomous Systems.

As ASs can scale in size from single computers to large networks, this simulation results

in large quantities of abstraction.

In order to maintain e�ciency, this simulation simulates a small number of ASs in

detail, and considers the remainder of the Internet to be a single, large AS.

By using the statistical General Epidemic Model, the propagation of the worm is

modeled. Of interest is the simple idea that the rate of spread of infection is propor-

tional to the product of the two population sizes: the susceptible and the infected.

The vulnerability in the IIS webserver that the Code Red vII worm exploited can be

found in Microsoft (2003c), and the worm itself has been analysed by Friedl (2001).

2.5.3 Other Worms

Bailey et al. (2005) dissected the Blaster worm that was found on the Internet in

August 2003. Initially focusing on a broader overview, they continue by discussing the

workings of the worm, and variants of the worm that it uses. Finally, they conclude

by observing the Blaster worm after the initial spread, noting especially how it is still

�alive� and active on the Internet.

The Blaster worm was also studied in Castaneda et al. (2004), and the o�cial anal-

yses of its propogation can be found in Dougherty et al. (2003), Knowles and Perriott

(2003) and of the DCOM RPC exploit that is uses in Microsoft (2003a) and Microsoft

(2003b).

The Welchia worm is also studied in Castaneda et al. (2004), and its propogation

detailed in Perriot (2008).

The Witty worm is studied in Stewart (2004) and Shannon and Moore (2007), and

the vulnerability used is detailed in Gatti et al. (2004).

2.5.4 General Worm Literature

Weaver et al. (2004) focus on the degree of parameter change used in simulations of

worms: most simulations scale down the size of the address space of the Internet in
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order to allow for more e�cient simulation. The authors argue that while this remains

relevant, in order to draw useful data from simulations, other parameters need to be

scaled as well. Chie�y, their argument focuses on the scan-rate of the worm dropping

o� faster, and the problem of reducing randomness to �t the new scale.

In Zou and Gong (2004), a model for the spread of email worms is suggested. The

authors then go on to mention the simulations that they have run using this model.

Though this paper focuses more ontheory and doesn't dwell on the simulations in-

volved, the important element is the OSI stack layer of the level of simulation: by

creating simulations at the top of the OSI stack, they have abstracted a signi�cant

amount of underlying detail.

This highlights a need for robust simulators: high-level protocols must be able to be

simulated in a similar way - should an application-level protocol need simulation, the

framework should be robust enough to support it.

On a more generic level, Gorman et al. (2004) discuss the modeling of malware on

the Internet using methods traditionally associated with biological sciences.

In traditional predator-prey models, it is shown how an equilibrium between two

groups of creatures, a predator species and a prey species, is established. When few

prey animals exist, predators starve and die. When few predators exist, prey animals

grow rapidly. Due to the increasing amount of prey, the numbers of predators swell.

Due to the increasing number of predators, prey population shrinks. This returns us

to the initial state of the example, and shows the established equilibrium.

Gorman et al. (2004) use the metaphors of predator and prey in an online context:

Predators are hackers and malicious software. Prey are internet-enabled hosts that can

be compromised by the predators.

Though signi�cant di�erences exist between biological predator-prey models and

electronic predator-prey models (such as the speed of growth of the populations, or the

need for certain types of predator to consume speci�c types of prey), the model is still

considered viable for simulation.

They then go on to outline a methodology for simulating the predator-prey relation-

ship, with a small percentage of available hosts acting as prey, and predators introduced

into the simulated network system.

2.5.5 Worm Simulators

In Liljenstam et al. (2003), the authors develop and document their worm simulator,

the �DIB:S/TRAFEN� system, discussing its possible e�ect on the Internet and the

theory behind its function.

This two-component worm-countermeasure system works by breaking the concept of

a worm into two distinct properties:
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1. The random-scanning nature of (some) worms

2. Packets from a single worm carry some signature speci�c to that worm

Through these two properties, the system works as follows: The DIB:S (Dartmouth

ICMP BCC System) system watches certain unassigned IPv4 Internet addresses. Be-

cause the non-existent hosts at those addresses can have no practical functions, any

attempt to access the address can be concluded to be either useless or malicious. Be-

cause of this, any packet arriving at that location is immediately tagged to be watched,

and (because worms can generate massive amounts of tra�c), the address is ignored

for a small period of time.

If these watched addresses are distributed evenly across a large amount of IPv4

address space, then the packets received can be considered to be a good statistical

sampling of random packets sent across the Internet.

The TRAFEN (TRacking And Fusion ENgine) then observes these alerts, and at-

tempts to �nd common signatures from them. It does this through a series of constantly

updated hypotheses.

Through this combination of systems, large-scale random-scanning events on the

Internet can be rapidly detected and countermeasures can be developed. This could

be simulated using a robust simulator, and would take a form very similar to that used

in network telescopes, considered in Section 2.4.1.

This paper also takes into account the development of a simulator that can be used to

test the DIB:S/TRAFEN system, then discusses experiments done with the simulator.

Finally, the authors compare their simulated data to observed data and conclude

that their system would be e�ective as a worm deterrent.

2.6 Network Simulators

As discussed in Section 2.3 and Section 2.5, simulation is an important part of network

research, and it has been a vital part of Internet worm research for many years. As

a result, several notable simulators have been developed. These simulators have a

broad application domain - they typically attempt to model (in detail) many forms

of network tra�c, and allow the user to change parameters according to the needs of

their simulation.

Several simulators are popular amongst researchers, and they are discussed here:
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2.6.1 ns-2

A popular network simulator, ns-21 is a free, open source network simulator that uses

the C and Tcl programming languages to develop simulations. As part of the ns-2 suite,

a variety of tools are made available to simulation developers, such as the simulation

engine (for which the suite is named) and nam, the simulation visualiser.

The following research uses ns-2 as a core component, and displays the simulators

capabilities:

• Chen et al. (2002b) use ns-2 to model a proposed means of wireless ad-hoc routing

choice.

• Dutta et al. (2002) propose pre-�ltering as a means of improving the e�ciency

of simulators, and use ns-2 as an example for testing this.

• Dyer and Boppana (2001) use ns-2 for analysing simulated TCP performance in

a wireless network.

• Feldmann et al. (1999) consider the e�ects of users and networks on the charac-

teristics of IP tra�c, and use ns-2 to validate their hypotheses.

• Garetto et al. (2001) use ns-2 in their prototyping of a new form of TCP.

• Hanle and Hofmann (1998) test alternative multicast protocols for the MBONE

network using ns-2 for validation.

• In Hofmann et al. (1999), the authors propose improved means of caching stream-

ing media on the Internet, several techniques grouped under an architecture

named `SOCCER' (Self-Organizing Cooperative Caching Architecture). They

use ns-2 to prototype this architecture.

• Hu and Johnson (2000) discuss on-demand routing protocols - protocols that

only search for the route to a destination node when a sending node sends to the

destination. They discuss and simulate means of caching results of the on-demand

routing information.

• Kanodia et al. (2001) suggest and prototype (using ns-2 simulation) an intelligent

form of QoS module.

• Lan and Heidemann (2003) discuss the system they developed (RAMP, or RApid

Model Parametrization) that listens to real tra�c, and attempts to parametrise

it in order to create near-real-time simulations. RAMP parameters are designed

1http://www.isi.edu/nsnam/ns/
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to be used with the ns-2 network simulator.

The authors begin by discussing the data sets that they obtained in order to test

their program, then go on to discuss the technologies they harnessed to rapidly

extract parameters from data. They used wavelet-based time series analysis for

scaling, and the Kolmogorov-Smirno� goodness-of-�t test to determine di�erences

in tra�c datasets. They then go on to compare RAMP to another workload

simulator, SURGE, showing how RAMP, using fewer assumptions about tra�c

distributions, more accurately models the patterns.

• Kong et al. (2001) use ns-2 as a simulator to con�rm their proposed scalable solu-

tion to the security challenge that mobile ad-hoc networks face - the distributing

certi�cate authority functions via threshold secret sharing.

• In Marina and Das (2001), the authors make use of ns-2 to perform comparisons

between routing protocols to verify their research.

• Puri et al. (2001) evaluate their protocol for video streaming over the Internet

by making use of the ns-2 simulator.

• Rejaie et al. (1999) develop a congestion control mechanism to encourage �TCP-

friendliness�, simulating it on ns-2 to determine its various properties in a com-

plicated environment.

• Sahu et al. (2000) use ns-2 to validate their research into di�erentiated services.

• Sinha et al. (2001) use the ns-2 simulator in comparing the performance of two

ad hoc routing protocols, DSR and AODV.

• Veres et al. (2000) use ns-2 to simulate the e�ects of TCP connections on a

variety of network setups, with a particular focus on the changes over a period

of simulated time.

• Xu et al. (2000) make use of ns-2 to present their proposed algorithms for routing

in ad hoc wireless networks where energy is scarce.

Further research which makes use of the ns-2 simulator can be found on their website2.

2.6.2 SSFNet

Another popular simulator in research, SSFNet is a set of libraries used in programmatic

development of simulations. Strong use is made of the `�ow' abstraction to more

e�ciently model TCP connections.

2http://www.isi.edu/nsnam/ns/ns-research.html
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The following research makes use of the SSF framework for developing simulators:

• Cowie et al. (1999) discusses the challenges and considerations which are nec-

essary to adequately model the complete Internet without abstraction (which

causes a loss in accuracy). Related to Cowie and Liu (1999), both describe solu-

tions as they are applied to the SSFNet simulator. A statement made in Cowie

et al. (1999) is another important aspect of network simulation development:

�[w]hat works instead is a modeling framework that decouples con�gu-

ration data from con�guration code. A model is built from a hierarchy of

self-con�gurable classes with assistance of a database. The goal at each

design stage is to simplify the class code so that it is both veri�ably and

intuitively correct. If we can verify the pieces, and verify the methodology

used to glue the pieces together into a large model, then we can inductively

validate even very large, complex models.�

Practically, this means that components in a network simulator should be

developed simply, with modularity as a priority. If all simple components in

the system are tested and are operating and interoperating properly, then it

provides additional validation for larger models using similar components.

• Bai et al. (1999) simulate the e�ect of two protocols on a wireless network, by

observing the corresponding errors that occur.

• Using SSFNet, Briesemeister and Porras (2005) propose and simulate a method

for worm detection and countering. They use a broad catching strategy ('group

defense strategy') to ascertain the origin and signature of the worm, then rate-

limit to slow the spread.

• Li (2001) contrasts the speedup of the SSFNet simulator over that of the ns sim-

ulator, a precursor to the current generation ns-2 simulator described in Section

2.6.1.

• Mao et al. (2002) use the SSFNet simulator to test their hypothesis about the

e�ects of sender-side loop detection and withdrawal rate-limiting, proposed fea-

tures of BGP.

• Nicol (2001) uses a Dartmouth implementation of the C++ API for SSFNet,

known as DaSSF. The authors use this simulator to test their composite synchro-

nisation algorithm which searches for conditionally optimal channel assignments.

• Perrone and Nicol (2002) discuss the development of an implemention of the Scal-

able Simulation Framework (SSF) for TinyOS - an operating system for �smart
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dust�. �Smart dust� refers to the idea of a high number (hundreds to millions)

of tiny processing units that can conceptually work together to do large-scale

computation.

• Xiang and Zhou (2004) describe ways of defending grids of computers against

Distributed Denial-of-Service (or �DDoS�) attacks, and use the SSFNet simulation

framework for testing.

Other reseach that makes use of this simulator can be found on the SSFNet website3.

2.7 Other Relevant Readings

Cooperative Association for Internet Data Analysis (2008a) provides a broad set of in-

formation on packets captured by a network telescope (or �darknet�), a form of scanning

malware countermeasure. This data is useful as it provides insight into the �ambient

noise� of tra�c on the Internet, and is particularly useful for simulation modeling as

it allows for more accurate depictions of tra�c from an abstracted �Internet� - allow-

ing simulation development to remain focused without the challenge of modeling and

determining realistic Internet tra�c.

This data could be used to validate the output of an Internet simulator, but, as ex-

plained in Section 7.4, this was not done for this research due to bandwidth constraints.

The ambient Internet noise theme is continued in Pang et al. (2004), where the

authors study the �noise� they have acquired through a network telescope and comment

on the results they �nd. This �eld of research is also investigated by Richter and Irwin

(2008), who use a small Internet telescope to make inferences about the composition

of the Internet, considering packets that are received and �nding speci�cs about their

origins.

2.8 Summary

In this chapter, literature relevant to the development of network simulators was pre-

sented. Section 2.2 focused on networking problems and concepts, speci�cally focusing

on the challenge of network structure and design. Section 2.3 considered literature

covering Internet and network simulation, citing documents that had made heavy use

of simulation techniques and noting those aspects that they made use of, in order to

ensure they are included in simulator development.

Section 2.4 began by discussing malware and Internet worms, focusing on Code Red

vII (a particularly well-documented case), extracting information about the worms for

3http://www.ssfnet.org/publications.html
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use in simulation. Section 2.4 then changed the focus to instances where these worms

have been simulated, in order to better see the simulation techniques used in this

problem domain.

Finally, Section 2.6 discussed other popular network simulators, and cited the large

bodies of research that have made use of them.

The concepts taken from this review of current research are used throughout this

work: in the process of the design and construction of the simulation software discussed

in the following chapter, as well as in the development of worm simulations performed

in Chapter 6.
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3 Software Design and

Construction

3.1 Introduction

Constructing robust network simulators is a challenging, complex task that requires

multiple iterations of the implementation and design process. The program evolves as

simulations' needs begin to test the boundaries of the capabilities of the simulator.

Because of the evolution of the simulator, documenting the �nally produced program

is of little use. Instead, the design goals and principles are discussed, and then the

initial program is documented. Once this is complete, the challenges that arose in the

implementation of the simulations are documented, and the improvements that were

made to overcome those challenges are shown.

This chapter discusses the design and construction of a simulation engine, or simula-

tor. Section 3.2 documents the initial design of the simulator, beginning with Section

3.2.1, a discussion of the major conceptual components of the system. Following this,

the planned implementation details of the system are covered in Section 3.3, covering

a more programmatically-oriented overview.

In Section 3.4, the development of simulations is documented, showing the major

forms of simulation components, and discussing how these components interact with

the execution system.

In Section 3.6, the challenges faced after developing and running simulations are

shown, and the improvements made to the system are documented. Note that the

results of the executed simulations can be found in Chapters 5 and 6.

Finally, in Section 3.7, further possible extensions to the simulator are mentioned,

with an explanation for their non-inclusion in the current system.

3.2 Construction of the Network Simulator

The network simulator, which was dubbed �GraphSim� for �Graph Simulator�, was

designed with the ability to develop robust, powerful simulations as the chief priority.

Secondary was e�ciency, as a major priority was keeping the program executing on a
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Figure 3.1: Simulator Subcomponents

single system, and simulated accuracy, as trade-o�s for e�ciency and detail were only

made in extreme circumstances.

Design and development of the simulator was performed iteratively - as simulations

were found to make more demands of the simulator, the system was redesigned and

further developed to extend it's functionality. Because the simulator was created for

users to construct their own simulations and components, it was felt that multiple

design and development phases would be required, as each generation of simulations

would add feature requirements to the simulator engine itself. This resulted in a richer

simulator, with tested component sets.

In designing the simulator, two major points of view were considered: a high-level

overview which described the system in terms of broad concepts, and a programmatic

overview, which took into account the speci�cs of the programming that would be done

to implement the system. This was to ensure that the broad concepts that were initially

conceived could be translated easily in the implementation phase of the program, while

losing little of the important functionality that was needed when the system was �rst

considered - the goals of this research should not be compromised due to programming

challenges that arise.

The initial conceptual design is described in Section 3.2.1, while the pragmatic,

programmatic design decisions are detailed in Section 3.3.

3.2.1 Initial Conceptual Design

The initial conceptual design of the simulator centered on the vision of a network

of hosts represented by icons, connected with lines, passing packets of information,

represented as icons with data on them, around the network. Hosts should be able to

be added and connected arbitrarily to the network, and through a simple mechanism,

code should be able to be appended to the various components.

Speci�c forms of nodes (such as an �internet� node, a �router� node or a �host that has

been infected with a virus� node) could be made, as could speci�c forms of connection

(�10baseT� connection, �lossy� connection, or `perfect' connection) and packet (�UDP�

packet, �worm-containing� packet). These could be modeled within the simulator,
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Figure 3.2: State Component of Simulator

either as subclasses of nodes (if their behaviours are consistently di�erent within the

bounds of a simulation) or by adding additional attributes.

This novel system was designed to allow for very rapid conceptual design of networks

and simulations, with simple components that related strongly to their real-world equiv-

alents by allowing attributes of any form to be assigned to them. For instance, a packet

component with these attributes could have a �viral payload� attribute, set to �blaster

worm�. With properly speci�ed attributes in an appropriately designed host (such as

an �infectable� host, with an �act upon payload arrival� attribute), this could have se-

mantic rami�cations for the remainder of the simulation (such as causing more infected

packets to be generated from the host).

The simulator was conceptually divided into three subcomponents, as visualised in

Figure 3.1: the state system to hold nodes (considered in Section 3.2.1), a communica-

tion system to model connections (considered in Section 3.2.1) and an execution system

which would act upon the previous two components (considered in Section 3.2.1).

State System

The conceptual design of the state system was a series of nodes with a variety of

attributes and behaviours, as visualised in Figure 3.2. Following the robust theme of

the simulator, they must be capable of simulating the behaviours of a very large range

of devices. Any device that could be connected to any sort of network should be able

to be represented.

Because of this, a very simple and broad set of minimum requirements for node

implementation would have to be de�ned. Upon re�ection, the following behaviours

and attributes were considered to be of primary importance, and thus were added to

the template for nodes:

• A unique reference or name

• A behaviour that could, under certain circumstances, allow the node to send

something (presumably a message of some sort) from itself to another node via
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Figure 3.3: Communication Component of Simulator

a connection

• A behaviour that could, under certain circumstances, allow the node to receive

something (presumably a message of some sort) from another node via a connec-

tion

• A list of connections that are connected to this node

• An enlargeable set of secondary, �semantic� attributes that contained a seman-

tic descriptor (such as �IP Address�) and its associated piece of information

(�192.168.0.1�)

With this template in place, programming of the node template could begin. The �node

module�, described in Section 3.5, was the implementation of this template.

Communication System

The conceptual design of the communication system was a series of connections between

nodes. The isolation of the connection system and the state system was important, as

the connections between nodes can have many more attributes than just the unique

addresses of each node. Concepts such as bandwidth, tra�c and lossiness must also be

representable in the communication system.

In order to generate a template for a connection, much like that used in the state sys-

tem for nodes, it was necessary to set minimum requirements. The following behaviours

and attributes were considered of primary importance, and used in the connection tem-

plate, visualised in Figure 3.3:

• A reference to the nodes that the connection connects

• A behaviour that takes a message from one node, and delivers it to another node

• A behaviour that can disconnect the connection from the current pair of nodes,

and connect it to another pair
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Figure 3.4: Execution Component of Simulator (Action Subcomponent)

• An enlargeable set of secondary, �semantic� attributes that contained a semantic

descriptor (such as �current lossiness�) and its associated piece of information

(�21%�)

With this template in place, programming of the connection (or �conn�) template could

begin. The �connection module�, descibed in Section 3.5, was the implementation of

this template.

Another important conceptual component of the communication system was the

messages that would be passed using the connections. The messages themselves were

rather simple, and comprised of a �header� (not to be confused with protocol-speci�c

headers that would be part of the packets that these messages represent) and a �pay-

load�. The �header� contained the unique node names of the sender and recipient of the

packet. The �payload� contained the information that the message itself would contain

(it would be in this section that a protocol-speci�c header would be found were this

concept to be implemented).

In keeping with the robust nature of the simulator, it was also decided that the

enlargeable set of secondary attributes were added to the message system, as various

semantic concepts could be associated with them. Protocol, fragmentation and other

attributes could then easily be associated with the messages in the system.

Execution System

The conceptual design of the execution system is more complex than the state and

communication system. It was designed with three major subcomponents: action

components, the scheduler component, and the main execution loop.

Action components This component was, in fact, de�ned as a series of mini-components

that could be combined or altered to perform operations upon the state and the

communication systems, visualised in Figure 3.4. Through this manipulation,

the system could be advanced from its initial states.
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Figure 3.5: Execution Component of Simulator (Scheduler Subcomponent)

Figure 3.6: Execution Component of Simulator (Main Execution Loop)

Scheduler component This takes the form of a table (shown in Figure 3.5), com-

bining action components with speci�c parameters (such as which part of the

system to operate upon), and an associated simulated time. This table could

be manipulated (by action components) at any point in the simulation, so that

single complex actions (such as �send a packet via four hops�) could be unpacked

into several simpler actions (such as �send a packet from one node to another�,

for each hop).

Main execution loop An execution loop contained a �timer�, which would increment

upon completion of the loop. During the loop, each action component that was

associated with the newly set timer in the scheduler would be implemented, with

the associated parameters set, and the associated code executed. Once complete,

the component would be disposed of. This can be seen as a �owchart, shown in

Figure 3.6, and magni�ed in Figure 3.7.

The only varying part of this system was the action component, so a template would

have to be generated for it. In order to generate a template for an action, much like that

used in the state system for nodes and the communication system for connections and

messages, it was necessary to �nd minimum requirements. The following behaviours

and attributes were considered of primary importance, and used in the action template:

• A unique name that should be used as an identi�er in the scheduler's table.
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Figure 3.7: Main Execution Loop

• A behaviour that will execute a series of commands speci�c to the form of action.

• A section of code to be executed when the main execution loop reaches the action

component, which may or may not take parameters.

This template is implemented in Section 3.5.

3.3 Programmatic Design

Having completed the conceptual design, more speci�c details of the system needed

to be outlined. Expected core and complex components of the simulator had to be

planned and detailed, in order to avoid problems arising later in the implementation.

These components were considered to be the following:

The container component The container component is largely the parent component

of the rest of the system.

The scheduler component The scheduler component, a sub-component of the en-

gine, is conceptually dealt with in Section 3.2.1.

The execution engine component The execution engine component uses the sched-

uler component to execute actions. It is also a sub-component of the engine

component, conceptually detailed in Section 3.2.1.

The plugin management component This component is the primary component of

interest in this research: the conceptual templates detailed in all of the sections

above are instantiated as modules and used to represent the network that is to

be simulated.
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Container Component

The container is a wrapper component for the entire simulator system. It holds all

of the modeled components of the simulator, and is the part that �represents� those

objects that the simulations are describing, at any single given moment in time. While

it may be wrapped in a GUI and use external �les for inputs and outputs, for the

purposes of execution, the engine contains all of the components necessary to execute

the simulations.

All of the programmatically detailed components below are sub-components of the

container component. The scheduler and execution engine are part of the main ex-

ecution loop of the program, and operate upon the simulated network, comprised of

modules that have been imported via the plugin management component.

The container component was designed to begin its execution by initialising the

system for simulation. This procedure involves instantiating a �setup� module that

will create the structure of the network (comprised of nodes and connections, with

the initial messages queued to be sent), and the major actions that are to take place.

It should then add this module as an action component to the scheduler as the �rst

action to take place. Once that is done, the execution engine should then be started.

After this, the main role of the engine is to perform background logging of the state

system, keeping a record of the current state of the system periodically. This serves

two purposes: �rstly, it allows for system restoration at the logged point if the logs

are extensive, and secondly, it allows for analysis of the current state of the system -

initially for debugging purposes, but �nally in order to gather information about the

state of the system at a speci�c time.

Scheduler Component

The scheduler component is a sub-component of the engine component. It contains an

ordered table (implemented as a two-dimensional array) with three attributes: a time,

the name of the action component to be executed at that time, and optionally a series of

parameters that are associated with the action at that particular time. An example of

an action that would be without parameters would be a ��nish execution and terminate

simulation� action, while an example of one which would include parameters would be

a �send a message from host X�, where X could be speci�ed as a parameter, as could

the contents of the message if so desired.

The scheduler has to be globally accessible, as other action components are required

to alter it. A common example of this was the sending of a message to a host that

was not immediately connected to the sending host. A simple action that was in the

scheduler, such as �send a message from X to Z�, where X and Z are separated by host
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Y, could be interpreted and re-added to the scheduler as two actions: �send a message

from X to Y to arrive at time 2� at time 1, and �send a message from Y to Z to arrive

at time 3� at time 2.

The scheduler itself does not execute these actions. That is the responsibility of the

execution engine. The scheduler is merely a complex means of storing the order of

actions to be executed.

Execution Engine Component

The execution engine component is a sub-component of the engine component. It op-

erates upon the scheduler component, by requesting actions that need to be performed

at speci�ed times. When the scheduler returns these actions, along with any associated

parameters, the execution engine begins to instantiate these action components and

execute the code associated with them.

The execution engine itself does not contain the code that is executed. The code is

part of the action component that it receives from the scheduler. The action compo-

nents are written as seperate action plugins, which are detailed further below, in 3.5

and in the next described component.

Plugin Management Component

The plugin management component is the �nal sub-component of the engine compo-

nent. In order to properly understand this component, it is �rst necessary to under-

stand GraphSim plugins:

The plugins that are used by GraphSim correspond to the four types of templates

detailed above in Section 3.2.1: node plugins, connection plugins, �message�, or packet

plugins, and action plugins. Each of these plugins de�nes a broad form of the requisite

type. A node plugin, for instance, could be an �infectable host� plugin, or an �IPv4

host� plugin.

The plugin manager, then, is the part of the engine that governs the use of the

plugins, containing information about plugins, and allows for their instantiation and

use. As such, it is the most important part of the simulator.

It is broken down further into the following parts:

Plugin Location, Parsing and Import As plugins are stored externally to the simu-

lator, they must be located on the disk, parsed for correctness and imported into

the simulator.

Plugin Instantiation Once plugins have been imported into the simulator, they must

be instantiated on an on-demand basis.
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Through the use of these two parts, the plugin manager can import and instantiate

new plugins as needed.

Robustness in Simulation

Robustness is an important feature in any form of simulation that can easily be adapted

to suit a researcher's needs. It can be de�ned as the degree of capability a system has

to represent or model reality.

As a result, simulation robustness can be implemented in two ways:

1. Creating no framework at all, as a framework imposes conceptual limitations

2. Creating a very generic framework, using the minimum possible restrictions on

modeling while still imposing order on the system

While the �rst option is tempting, it leads to di�culties in development. With no

framework in place, each component needs to be uniquely developed for every sim-

ulation, and the simulator itself will need continual modi�cation to support the new

components.

The second option, while not �absolutely� robust (in that it imposes some order on the

system) can still allow for streamlined development while allowing rich representation

of objects in simulation.

3.4 Construction of Network Simulations

Simulations in GraphSim are constructed in the order and style shown in this section.

They would primarily be composed of instantiated plugins that were introduced in

Section 3.3. Though it is constantly being updated and improved, the simulations

described here will explain the modules and plugins with the underlying assumption

that it is based on the build of the execution engine that was current in late 2007.

The modules that are used for the simulations derive from one of four types: nodes,

connections, packets and actions.

The decision to do this comes from the notion of templatised constructs mentioned

in Section 3.2.1. These templates were used to de�ne the �nal implementation of the

interface and abstract classes that formed the foundation of the modules.

In order to allow for the broadest range of userbase for simulation development, the

plugins were designed for use with Microsoft's CLR (Common Language Runtime), so

that any language that has been prepared for CLR use (such as Python, C or C++)

can be used for writing simulations. Testing and preparation was done in C# on the

mono platfrom, so the speci�c references shown below are tailored with this in mind.
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3.4.1 Planning

Before any simulation is created, careful planning needs to take place. The minimum

information required before programming should begin is as follows:

• What sorts of hosts will there be in the simulation? Should these be placed in

a broad category (using a single plugin) with specialised attributes, or are they

diverse enough to justify several plugins?

• How are the hosts connected, and how would the user wish the connections to

be simulated? Does the user want packets to spend time `on the wire', or would

they prefer immediate packet delivery? Are all hosts mesh-connected, or do they

follow some network structure?

• How complex does the user wish their packet plugins to become? Because several

million packets may be simulated simultaneously, e�ciency can quickly become

a consideration. Does the user want the `payload' to accurately represent the

contents of a packet, or are they prepared to allow for high-level abstract messages

to be sent?

• Which classes of action occur in the simulation? Does the user need to make an

action plugin for each action in the system, or can they be refactored so that it

uses fewer actions, with parameters passed that a�ect their behaviour?

Once these questions have been answered, the user should have a clear knowledge of

which plugins should exist in the simulation, and the complexity at which these plugins

will be modeled.

3.5 Modules

Because of the robust nature of the simulation, all plugins contain an enlargeable data

structure, used for adding semantic content to the simulated components as needed.

For ease of use, consider that the structure operates as a dictionary with strings used

as keys and strings used as values, that grows like a vector. The initial design work

termed the keys to the dictionary `tags', so the data structure is termed a `tag list'.

Each of the module types throughout this section have diagrams to explain the struc-

tures that they use. These are included for clarity and explanation of the construction

choices that were made when fundamentally de�ning the components considered as

building-blocks for a simulator.
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Figure 3.8: Node Module Diagram

Node Modules

Node modules, as mentioned in Section 3.2.1, need a unique reference, or name, a

sending behaviour, a receiving behaviour, a list of connections, and a tag list. This

could be modeled using data structures like those shown Figure 3.8.

This header could be used in the interface for node objects. When the interface is

implemented as, say, a `infectable host' node, then it would override the header's basic

attributes and behaviours with it's own.

Connection Modules

Connection modules, as mentioned in Section 3.2.1, need a link to the nodes they

connect, a behaviour that corresponds with the sending and receiving behaviours of

the nodes, connecting and disconnecting behaviour, and a tag list. This could be

modeled using data structures like those shown in Figure 3.9.

This header could be used in the interface for connection objects. When the interface

is implemented as, say, a `high tra�c' connection, then it would override the header's

basic attributes and behaviours with its own.

Packet Modules

Packet modules, as mentioned in Section 3.2.1, need information about origin and

destination, a payload, and a tag list. As can be seen, packets are very simple data
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Figure 3.9: Connection Module Diagram

structures that contain no behaviours of their own: they are sent over connections, and

nodes can interpret their payloads on arrival.

This packet interface, then, could be modeled using data structures like those shown

in Figure 3.10.

This header could be used in the interface for packet objects. When the interface is

implemented as, say, a `udp' packet, then it would override the header's basic attributes

and behaviours with its own.

Action Modules

Action modules, as mentioned in Section 3.2.1, need a unique reference, or name for the

scheduling table, a behaviour to be executed when their time of execution is reached,

and a tag list. Because the execution behaviour can optionally take parameters, using

C#'s overriding mechanism it is possible to de�ne more than one function with the

same name, one to be called if the parameter list is included, the other if it is not. This

could be modeled using data structures like those shown in Figure 3.11.

This header could be used in the interface for action objects. When the interface is

implemented as, say, a `node sending' action, then it would override the header's basic

attributes and behaviours with its own.
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Figure 3.10: Packet Module Diagram

3.5.1 Execution Setup

When the engine component is initialised, it goes through a speci�c sequence of func-

tion calls. Optimally, every new simulation that is run should require a minimum of

codebase alteration, so it is in the engine that robust initialisation should occur.

In GraphSim, this is done by specifying which simulation should be run through a

`setup' action plugin, which is executed immediately upon simulation startup. Each

simulation has its own setup plugin, and the setup plugin is the only part of the engine

that changes between simulations.

The setup plugin is broken into two sub-functions: setting up the network structure,

and setting up the events that should occur throughout the simulation. Both are

largely dependant on the simulation to be run (for instance, a simple network testing

simulation which has a very simple structure setup, but might have very detailed event

scheduling for micromanagement, while a large-scale full internet simulation might be

quite the opposite). The network structure typically runs through a loop, creating,

naming and adding instantiated nodes to the network structure. The event setup

typically starts with the sending of packets from various hosts.

In most of the more advanced simulations that have been built with GraphSim, nodes

are created with outgoing and incoming packet `queues', so at setup time nodes are

initialised, and packets are then enqueued to various nodes. In the event scheduling

system, a `send packet' action plugin is added to the scheduler with the name of a

speci�c node that has enqueued packets passed as a parameter.
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Figure 3.11: Action Module Diagram

3.5.2 Simulation Development

In this section, an example of a simulation that could be set up and executed is de-

scribed.

The �rst components developed in the simulation are typically the �start� and ��nish�

action components. The start (or setup) component typically instantiates the node-,

connection-, and several packet-objects, and will (depending on the simulation) also

schedule the actions that are to be performed throughout the simulation.

The �nish action will typically stop any other actions executing, then print a log of

the current state of the system. It will then close the execution engine and stop the

simulator.

Once this has taken place, development will typically start on the nodes and con-

nections that will be used in the simulation - at a design level, the attributes and

behaviours will be considered, then implemented as �tags� and methods respectively.

If the behaviour of the node will be signi�cantly di�erent from that of other node

types, then an entirely new class of node will be created to adapt for that. Similarly,

the connection will have variables and methods attached.

Packet objects typically do not require any signi�cant changes, as the range of be-

haviours that a packet could represent that would have an impact on a system, is

limited.

Finally, the actions that would take place that would be modeled. The way in which

these are modeled will typically be prototyped and revised several times in the course

of a simulation's development, as action components in particular require iterative

development. Common challenges (raised in Section 3.6.2 below) are easily aggravated

by any bugs in the action component code.
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While action components require a particular attention to detail, the entire simu-

lation development process is iterative - each pass further adding detail or removing

unnecessary elements of the simulation. Once the simulation developer is satis�ed that

the simulation is complete, then the simulation is done.

3.5.3 Example Simulation Development

The most complex simulation considered in Chapter 5 is a mixture of two types of

nodes, in a mesh-connected network, that connects to a further type of node, and is

capable of routing.

Setup and Finish Components

The setup action will need to create a network of nodes (developed later but noted

during the design stage) which are mesh-connected with connection objects, and which

send a large number of randomly addressed packets (some to the local simulated nodes

and some to randomly generated addresses).

The �nish action will log the number of packets received by each IP address, address-

ing each node in turn (all node types that have been simulated) and requesting the

number of packets they have received and (where applicable) which IP address they

were addressed to. This should then be printed to the screen, allowing the user to see

the outcome of the simulation.

Node Development

The three forms of node that this simulation will require can be referred to as �nodes�,

�routers� and �network nodes�. Each will require a speci�c set of attributes to represent

them.

The network node will need to store information on which abstracted nodes have

received packets. Router nodes will require a �routing table� attribute that stores

information about the types of nodes to which they might route packets.Nodes (as well

as router nodes) will need addressing information so that packets may be routed to

them.

Behaviours will also be di�erent - router nodes must route packets when they ar-

rive (unless the packet is addressed to the router node), while �normal� nodes should

indicate that a packet has arrived in their queue. Network nodes must interpret any

incoming packets and indicate to which abstracted node the packet would be delivered.
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Connection Development

As this is a simple simulation with no special note being taken of bandwidth or tra�c,

a simple connection can be modeled - the connection will simply dequeue a packet

from the �front� of a connected node's outgoing queue and enqueue it on the receiving

connected node's incoming queue.

Packet Development

Packet objects also remain largely unchanged from the simple case - addresses of sender,

receiver, and a string for a payload su�ce for this simulation.

Action Development

Two action types (other than the setup and �nish actions) require development for

this simulation - the sending action (which will execute the send behaviour of the

connection objects where appropriate) and an enqueueing action which will generate

a variety of random packets and place them on nodes' outgoing queues. A side-e�ect

of the enqueueing action would be to instantiate send actions for each packet which is

enqueued, in order to activate the sending e�ect.

3.6 Challenges and Evolution

In building a simulator of any signi�cant scale, three major challenges arise. The

massive amount of memory required to hold the information pertaining to the state

components becomes untenable on a single computer as the number of nodes and level

of detail rise. This is aggravated by typically poor means of associating semantic

information with nodes. Finally, access speed is an optimisation challenge, due to the

massive number of hosts and the need to rapidly acquire a speci�c host upon which to

operate.

3.6.1 Computation Concerns

Li (2001) states that: �The major di�culty in simulating large networks at the packet

level is the enormous computational power needed to execute all events that packets

undergo the network�. The proposed simulator does not consider computational power

a shortcoming: instead of modeling every packet to simulate tra�c, an attribute can

be attached to a connection component (See Section 3.5).

This also saves memory, a scarce resource which forms the basis of several challenges

mentioned in Section 3.6.2, by removing the necessity of containing every packet in
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memory and using an abstraction of �tra�c� instead.

3.6.2 Challenges

Before any attempts at solving problems can be made, it is imperative that the problems

that are being addressed are outlined comprehensively and documented, in order to

ensure that they are given proper attention, are fully understood, and are solved in

isolation, as a novel solution to one problem may not be useful for development of

similar simulators on systems di�erent to those used in this work.

Address Space

Memory shortage is a great challenge in a simulation system. If we were to try to

simulate the entire Internet, we would require 232 = 4294967296 hosts to be simulated

(Removing Class D and E networks, it still numbers approximately four billion ad-

dresses). Paxson and Floyd (1997) comment on this in their paper, �Why We Don't

Know How to Simulate the Internet�.

If we consider the amount of memory required to hold a pointer to a node structure,

we will �nd that the simulation will require 232 × 25 = 237 = 137438953472 or 128

gigabytes of memory. This is not perfectly accurate, as special networks, such as class

D and E networks which will not have to be simulated, have been ignored. However,

these networks are relatively small, and the amount of memory used to represent them

would be insigni�cant - the amount of memory needed is still vastly greater than most

modern desktop computers can hold. This does not include information about the

hosts, this is merely the memory used to hold pointers to all of them. This also does

not include the associated communication system which grows exponentially as we add

hosts to the system (assuming the system is mesh connected).

Unnecessary Memory Use

As the simulator becomes more robust, the hosts are expected to hold more and more

information. If we are allowing several di�erent concepts to be represented in our nodes,

then they can quite easily hold dozens of variables de�ning operating system, hardware

speci�cations, etc. As shown in Section 3.6.2, the number of hosts in the system might

be large, and the memory structures used to hold them explode the amount of memory

used. The challenge of holding large quantities of information in a very large number

of structures is in optimising the node detail access, and the solution is presented in

Section 3.6.3.
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Node Access Time

Most modern programming languages use a simple data structure such as a `Vector',

or `List'. It would seem tempting to use a structure like this to store the large number

of hosts in our system, as it is a standard in the language, as well as straight-forward.

The challenge arises, however, in the means of access.

An optimisation is possible if we assume that we are simulating a series of nodes

from an IPv4 network. In order to extract a node from the data structure given the

IP address in some form, we need to traverse the structure, comparing every element

with the associated IP address (assuming that the IP address is stored as a detail in

the node).

This is barely noticeable in trivial simulation examples, but when the simulation

grows large, at every time tick the simulator would have to search through several

million elements in the array, thousands of times. The access time for �nding a node

must be incredibly quick in order to facilitate rapid simulation.

3.6.3 Solutions

Having considered the problems of massive address space, unnecessary host memory

use and node access time, it is necessary to document the solutions that were proposed

and show those recommended for simulator development.

Access optimisations

In order to solve the access time challenge presented in Section 3.6.2, it is necessary to

use optimised methods of searching for an object in memory. By using data structures

that are ordered, we can improve search times signi�cantly. Presented here are the two

recommended methods: trees and hash tables.

Trees Trees can be used to traverse the IP space very rapidly and e�ciently. By

separating the hosts by IP address into their hexadecimal pairs, we create a tree

that is four levels deep, and closely approximates network structures. It is also

easier to optimise for space, detailed in Section 3.6.3. Because the time required

to �nd a node is constant (four traversals), e�ciency in �nding nodes is markedly

improved.

Hash Tables Hash tables can be used for even faster node retrieval. While trees

require four traversals, hash tables can immediately return the node. The only

processing in order to access the node is to apply the hashing function to the IP

address of the host.

In terms of memory, hash tables are slightly superior to trees - trees require
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a logical link to be kept between related elements, while hash tables use keys

(which conceptually are not stored in memory, but which are hashed at runtime)

for memory access.

Space optimisations

A solution to the problem that a shortage of memory presents is to only instantiate

nodes and create pointers to them when they are required. When the simulation

is started, the Internet can be described as a single entity. As a speci�c host (say,

146.231.115.89) is addressed, a new node can be dynamically created to represent the

host. At runtime, then, the host can be instantiated and detailed using statistics and

randomly generated values to represent its attributes. A greater challenge exists if

the user wishes to use every host on the Internet (or a particularly large network) for

their simulation. In this case, it is possible to do manual page swapping to a hard-

drive, though access time will be much slower than if the simulation were to be kept in

primary memory. Another alternative is heavy reliance on detail optimisation, detailed

below.

Detail optimisations

The solution to the challenge of host memory use, is to optimise the way in which data

is stored in memory. This can be done in three ways: by altering the way in which

variables are being stored in memory, by using dynamic data structures that only use

memory when required, and by creating reverse detail lists.

E�cient Storage When designing nodes, this factor should be taken into account.

Using large, memory ine�cient data structures for these details will result in

a large expenditure of memory. Avoid the use of strings and other list-based

structures if possible, and prefer integers, enumerations and Boolean values. In

places where strings are required, determine if it is possible to use a hash-function

and use a lookup table.

Dynamic Data Structures It is preferable, when creating nodes, to assign no details

to them, and create a dynamic data structure that can hold information that

shows di�erences between the node and the norm. In the case of a simulation

where most nodes are heterogeneous, this may present problems. If every node

di�ers from the norm, or if the number of details that must be represented are

few, then the overhead of a dynamic data structure may overshadow the saved

memory. In this case, it is better to specify details for every node statically.
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Reverse Detail Lists When the number of nodes that have a speci�c detail is small,

or, more importantly, if some action needs to performed on all nodes with a

certain property, then reverse lists become a necessity. A reverse detail list stores

a list of all hosts for which a detail is pertinent. An example of its use is in

Internet worm simulation: a list storing all nodes that have been infected by the

worm (and updated every time the worm infects a further host) has signi�cant

bene�ts over storing the details of the infection in the node itself. The �rst of

these bene�ts is greatly improved e�ciency. In order to �nd all the nodes in the

system that are infected with a worm, it would be necessary to visit every node

and determine its infection status. With reverse lists, it is a simple matter to

traverse the list and act upon each entry. The exchange for e�ciency in reverse

detail lists is the extra memory required. The overhead of lists for details may

be greater than the amount of extra memory that would be used to hold those

details, especially if dynamic data structures (mentioned above) are used.

3.6.4 Infection Simulation

One special case of a programmatic/representational challenge that would be encoun-

tered in the development of a network simulator is that of infection simulation. Be-

cause Internet worms can spread so rapidly (the Warhol and Flash worms described in

Nazario (2003) can spread globally in minutes and seconds respectively), the challenge

of representing this in memory arises.

Two options are available for simulation of infection:

Infection lists store the lists of infected hosts on a global level

Host parameters keep the infection information on the speci�c simulated node

While the latter option is tempting (as the speci�cs for each particular infection can

then be observed, such as duration of infection and number of re-infection attempts),

it introduces a great challenge in the worm propagation mechanism: having to �nd

each node that has been infected then becomes much more di�cult. Infection lists are

a simpler solution - a simple loop can run through a list of infected hosts, placing new

infection packets on each hosts' outgoing queue and sending them.

While a hybrid option is also viable (and allows for greater infection details to be

recorded while still allowing for simplicity of execution), it results in large redundancies

in memory, which would be the scarcest resource in the simulation.
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3.7 Further Extensions

As stated in the introduction to this chapter, projects such as GraphSim are continually

evolving to allow for broader simulations to be run. This has been complemented by

the plugin system that allows for incremental improvements to simulations via plugin

evolution, so that the entire system does not need to be changed in order to facilitate

improved simulations.

However the system still has several areas of improvement that could be implemented,

but due to constraints of brevity and scope, they are left as extensions. They are listed

here, and discussed.

3.7.1 Real-Time Visualization Integration

GraphSim was initially conceived as having a rich Graphical User Interface (GUI)

with which the user could interact with the simulated network. This would allow

for a visualisation of simulations initially, and once development matured, eventually

designing of networks at a GUI level.

While it would make an excellent extension to the system, it was considered a sec-

ondary priority. Visualisation of network simulations can be done as post-processing,

and does not need to be a core component of the system - especially if logs of simulated

activities are kept, so that a visualisation tool can show the states of the system.

3.7.2 Real-Time Parameter Alteration

Because GraphSim operates with discrete time and scheduling, it should be possible

to �pause� execution of the simulation. In this temporarily halted state, parameters in

the system could be adjusted, should they need alteration.

Theoretically, this could be done using plugins and user input, however it was not

considered to be of enough use that it should be included as a core part of the system.

It is assumed that a simulation can be set up in an initial state and thereafter, no

further user interaction will be necessary. All events that occur after the start of the

system can be added at the beginning as scheduled events.

3.8 Summary

The planning and construction phase of simulator development is an important part

of the development process. By considering the development options before writing

the program, it becomes possible to determine where programming challenges and

problems will arise.
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In Section 3.2, simulator development is discussed. First the concepts behind sim-

ulator development are considered, then followed by the concerns that apply to the

programming phase.

Conceptually, the simulator needs several core components: a system to retain the

states of the various simulated elements, a system to allow communication between

these elements, and a means of executing changes upon these elements.

Programmatically, the simulator will also require a variety of systems: an execu-

tion engine that will hold the simulation's information as well as the instructions for

changing them, a means of representing the passing of time in an ordered fashion, a

system for applying changes to components in the engine, and a means of loading and

using an array of modules that each represent some element of the real-world, used in

simulation.

In Section 3.4, the development of simulations is considered. The various types of

modules that will be used for simulation development are considered (nodes, connec-

tions, packets and actions) and detailed.

The anticipated development challenges are then stated, and solutions to these prob-

lems are then proposed.

Finally, possible extensions to the proposed system are mentioned. These extensions

are all possible means of enhancing the system but do not contribute to the core

functioning of the system, but are mentioned for readers who may wish to do further

research in this subject �eld. Appendix C contains a complete list of the plugins

developed during the course of this research.
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4 Simulation Design Decisions

4.1 Introduction

In order to validate the proposed simulator's ability to accurately and easily simulate

real-world scenarios, a series of simulations should be run that can be tested against

observed data. Many problem domains may be simulated, however in order to simplify

these simulations, a single problem-domain was heavily explored - the simulation of

internet worms. The justi�cation for this choice of subject can be found in Section

4.2.3.

Section 4.2.1 also describes and de�nes many of the subjects of the simulations. It

introduces malware as a core focus of the research, and provides a taxonomy of the

forms of malware used throughout this document. It then goes on to justify the use of

Internet worms as a subject of simulation.

Section 4.2.4 continues the discussion of simulation subjects by introducing malware

countermeasures, such as network telescopes and counter-worms.

In Section 4.3, the initial testing and calibration simulations are discussed. Section

4.3.2, speci�cally, deals with the various versions of plugins that were released, covering

the capabilities that were added or removed, and stating the justi�cations for these

decisions.

4.2 Simulation Focus: Malware

Malware is a popular source of technology research, due to the importance of infor-

mation security in modern networking and the Internet. Simulation is a tool used in

research for the development and evaluation of scenarios, and as such, plays an im-

portant role in malware research. An example of simulation use for research is the

ISEAGE project, described in Iowa State University Information Assurance Center

(2008). Furthermore, because �live� malware is dangerous for use in research, simu-

lation plays an even more vital role by allowing security researchers complete safety

while still studying the e�ects, causes and possible countermeasures to malware.

In this section, malware (particularly the form of malware known as �Internet worms�)

is de�ned, evaluated and considered as a subject for simulation in research.
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4.2.1 Malware as an Internet Phenomenon

Malware is de�ned in the Oxford English Dictionary Online (2008) as �Programs writ-

ten with the intent of being disruptive or damaging to (the user of) a computer or

other electronic device; viruses, worms, spyware, etc., collectively.�

Malware is a collective term for all software that has been written with malicious

intent. The growth in malware presence on the Internet has resulted in the �eld of

computer security growing tremendously, as personal and organisational protection

against malware becomes a necessity.

4.2.2 Malware Taxonomy

Malware can be grouped into several speci�c classes, depending on intent, function and

propogation method. The three main types that are of interest to this work are virii,

worms, and trojan horses.

Virii Virii (singular: virus) are de�ned in Oxford English Dictionary Online (2008) as

�a program or piece of code which when executed causes itself to be copied into

other locations, and which is therefore capable of propagating itself within the

memory of a computer or across a network, usually with deleterious results [...

especially] one capable of being inserted in other programs�. This de�nition is

broad enough to incorporate worms, mentioned below. If we remove worms from

this de�nition, then virii can be said to be non-self-propogating malware, which

spread via human intervention (whether conscious or unconscious), but which

deliver the malicious payload autonomously.

Examples of classic virii include the �Stone� (See F-Secure Corporation (2008))

and �Michelangelo� (See Computer Emergency Response Team (1992)) virii.

Worms Worms are de�ned in the Oxford English Dictionary Online (2008) as, �a

program designed to sabotage a computer or computer network [... especially]

a self-duplicating program which can operate without becoming incorporated

into another program.� This de�nition is limited to malware with autonomous

spreading mechanisms, and autonomous malicious payload delivery, even though

some worms can later change mode in order to allow malicious users into the

system, changing to a Trojan Horse (see below).

Popular examples of worms include the �Blaster� worm (see Dougherty et al.

(2003)), �Welchia� worm (see Perriot (2008)), and �Code Red� worm (see Danyliw

and Householder (2001)).

Trojan Horses Trojan Horses, or simply Trojans, are a class of malware that insinuates

itself into a computer system or network (via human or autonomous means), and
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then proceeds to `open a back door', allowing further illegitimate access to the

system to other entities, be they malware or user. These are considered a di�erent

class to those previously mentioned as the malicious payload is not delivered by

the malware itself: it merely allows other, unauthorised users of the system to

perform those malicious acts.

For purposes of this research, speci�c attention has been paid to Internet worms.

4.2.3 Rationale for Worm Simulation

Worm simulation was selected for the subject of simulation testing. There are several

reasons for selecting worm simulation as an initial and suitable subject for framework

testing:

Largely Homogenous Activity Internet worms operate by reproducing themselves in

a largely homogenous manner (excluding polymorphous worms, which are outside

of the scope of the testing - Nazario (2003) points out that the Ramen and Nimda

worms displayed multiple attack vectors, the �rst component of polymorphic

worms). Because each similar infection acts in a largely similar way to all other

infections, it means that the range of activities to simulate is kept small, allowing

for simpler simulations.

This will reduce the number of action components (See Section 3.4) that would

need to be developed.

Scaling Activity Density Worms initially begin with very few activities to simulate,

and rapidly scale to massive amounts of simulatable network activity. This al-

lows for a broad range of interesting simulations, scaling from single processor,

nearly immediate simulations, to the possibility of grid-based simulations, run

over hours, days or weeks.

Internet Scale Worms are an Internet-sized event. By simulating Internet worms,

massive simulations become the norm, forcing development to keep e�ciency

(both in terms of computation and memory) as a high priority.

Well Documented Several famous worms have been dissected, behaviourally and

structurally analysed, and documented extensively. With a large quantity of

available documentation, simulations can remain relevent to the �eld of security

research - Internet worm propagation or scanning algorithms can be accurately

depicted using the scanning algorithms used in the worms themselves.

The worms modeled in this research include:
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• The Witty worm, documented in Stewart (2004) and Shannon and Moore

(2007).

• The Code Red vII worm, documented in Zou et al. (2002), Wagner et al.

(2003) and further in Section 2.5.2.

• The Blaster worm, documented in Bailey et al. (2005) and Castaneda et al.

(2004).

• The Welchia worm, documented in Castaneda et al. (2004) and Perriot

(2008).

Simulations Useful to the Security Research Community By extending the simu-

lations into areas that are currently only being considered or prototyped (such as

Network Telescopes, Moore (2002) Moore et al. (2004) and Inter-Network Con-

tainment, Coull and Szymanski (2007)), the results of simulations can be useful

to the security research community for prototyping, testing, and development.

4.2.4 Worm Detection and Defence Tools

Worm detection and defence are key parts of Internet security. Through early de-

tection systems, complex worms can immediately be addressed and countered, while

simpler worms can be defended against using automated tools, without the need for

(comparatively slow) human intervention.

In this section, three tools are mentioned - network telescopes (a form of detection),

tarpits (a form of defence) and helpful worms (a controversial form of aggressive worm

defence).

Network Telescopes

Network telescopes, sometimes termed �darknets�, are a form of random scanning worm

defence. Network telescopes work by listening on IP addresses that are not published

(such as in DNS) other than for routing, and which run no valid services, where no

standard tra�c is expected. By not publishing the IP addresses, one can safely assume

that the incoming tra�c is not valid network tra�c - it will either be from miscon�gured

applications (such as incorrectly entered IP addresses) or from malicious scanning.

By using network telescopes, many large-scale internet threats can be detected at an

early stage of their infection cycle. Using certain worm signature auto-generation tools

(such as Autograph (Kim and Karp (2004)), PAYL (Wang et al. (2006)) or WormShield

(Cai et al. (2007))), network telescopes can have a large impact in stopping the rapid

spread of a worm.
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Tarpits

Tarpits, as described by Williamson and Williamson (2003), Li et al. (2004),Weaver

et al. (2004) and Yegneswaran et al. (2004). are another form of random scanning worm

defence, in some ways similar to network telescopes (see above). LaBrea Tarpits (2008)

is one of the most popular software implementations of this concept. A controller

host on a network listens for ARP requests that go unanswered as no host on the

network is associated with that IP - showing that the requester is either miscon�gured

or malicious, as above.

The tarpit controller then proceeds to send a SYN/ACK reply on behalf of the non-

existent host, initiating a �three-way handshake�. Any further contact with the sending

host is ignored, and no socket is opened - the malicious or incorrectly con�gured host

will wait for the connection to timeout before continuing with any further connections

on that thread. This timeout results in a large slowdown of major internet threats,

giving more time for further countermeasures to be implemented.

Helpful Worms

A controversial form of �strikeback�, a helpful worm is a means of countering a malicious

worm.

Malicious worms use security vulnerabilities to infect hosts on the Internet, and will

often leave the vulnerability open for further infections if the host is disinfected but

not immunised. In some cases, malicious worms will close the security hole and open

another, in order to receive commands from a controller of some sort.

Helpful worms use these security vulnerabilities to infect vulnerable hosts, then close

all vulnerabilities, before going through the same malicious worm cycle of infection.

However, once they have propogated for a certain period of time, they delete them-

selves, leaving the host clean and protected from further worm infection.

Though the concept seems sound, in practice helpful worms can often result in equally

massive tra�c loads as malicious worms, and in some cases can do even more damage.

The classic example of a helpful worm that resulted in rising infection problems is

the Welchia worm, designed to counter the Blaster worm. It has been documented in

Perriot (2008), where it is noted as having a �damage level� of �moderate�.

4.3 Early Simulations

The following two sections are a documentation of the process of early simulations that

took place, and, in the case of Section 6.2, a comparison between simulation results

and live data.
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4.3.1 Initial Simulations and Component Construction

In order to thoroughly test the simulator, simulations of increasing complexity were

run, beginning with very simple connectivity simulations and data transfer. Plugin

development was an iterative process that began with very simple components. A

single set of plugins, `Default Action', `Default Node', etc. was constructed. These

plugins were initially very rigidly de�ned, with very little variability. After some time,

a hashtable was added, by default, to all major components of the system, allowing

for much more semantic content to be added, for instance, by adding a `bandwidth'

key/value pair to a connection, a single basic plugin could be adapted to represent a

range of connection types, from high-tra�c, low quality cable to high-quality ISDN.

4.3.2 Component Evolution

Each of the components of the simulation described (nodes, connection, action and

packets) have undergone independent evolution. Nodes and connections, being the

focus of the research performed, received the most attention: actions and packets less

so. The following section documents the evolutionary process that the components

went through.

Node Evolution

As increasing complexity of representation became a pressing need for the simulator,

so the complexity of the node component scaled. The node components were the set

of components which required the most attention, as they represent complex pieces of

machinery.

Initially, all that a node represented was the end of a connection. The sole attribute

of a node was the list of connections which terminated on that node, in order to `fetch'

packets o� the connections.

As more semantic requirements were being made of simulations, so properties were

added to the system.

The �rst major `hard wired' attribute was an IPv4 address, so that nodes could

semantically know their `names', and address packets to other nodes based on a logical

naming scheme.

Once logical connectivity had been achieved, practical operations had to be added

to the nodes. Outgoing and incoming packet queue were added to represent packets

arriving and leaving a network interface (though initially it was only a single property,

and later developed into a full queue), and a set of methods were created for handling

packets on these queues - initially, `interpret packet' and `send packet', while the packet

68



queue only held one packet at a time, but later `queue packet' and `accept packet', which

placed packets onto the queues.

After testing, it became evident that two distinct forms of node would be required

in order to simulate as large a portion of the Internet as possible without requiring

an unreasonable amount of resources. This led to a divergance of node types: a Host

node represented a single host in the real world, while a Network node represented a

network of one or more hosts, which interacted on an abstract level. Because of the

abstract nature of a Network node, much internal processing could be reduced to simple

mechanics: every time period in the simulation, the network nodes' internal working

were assumed to operate as if they were a connected series of Host nodes. This also

led to an abstraction which could lead to a more convenient grid processing solution,

by treating all nodes that have been distributed over a grid as a Network node, and

incorporating all their input and output as the Network nodes'.

Connection Evolution

Connection objects were created to represent either logical or physical connections

between hosts, depending on the necessity of the simulation. This de�nition, while

very broad, leaves very little implicit actions and properties of a `connection'. As such,

the core de�nition of a connection has not evolved past a send action, and two hosts

that the connection links to.

In order to allow for latency and bandwidth, a queue was added to connections.

This was later adjusted to be a vector, as realistic conditions for IP packet arrival

could involve packet arrival in a di�erent order to the order in which packets were sent.

Once the base connection object was completed, speci�c types of connections were

implemented. Broadly, the two schools of connections were `immediate' and `delayed'.

Immediate connections, though less realistic, used less randomness in their sending

procedure and so were more useful for testing. They also required less computation

and memory, as packets would arrive immediately after sending, be interpreted, and

then disposed of, compared to delayed connections where messages were stored for

some period of time.

Action Evolution

Actions as a base object have remained largely unchanged since the original imple-

mentation. Initially, an action was a standard object (thus containing properties for

name and version, as well as a tag hashtable for customisability), with a single run

method that was executed when the event scheduler reached the action in the execu-

tion sequence. Eventually, this was amended to include a possible override for passing
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a message to the run method, allowing more speci�c commands to be executed on a

robust action object.

The primary example of this was in message passing - if an action was created that

passed a message between two nodes, it would (without some means of speci�cation) be

tied to only two nodes - a �send� action would be required for every connection between

one node to another. By adding message-passing functionality, a generic �send� action

could be created which could then use the message to interpret which node was sending

and which node was receiving.

Packet Evolution

Packets are also largely unchanged from the original design decisions: a packet object

contains a string to identify the receiving and sending node objects, and a string as a

message.

The standard packet object used for simulations run to date is an IPv4 packet type -

the recipient and sending node references are replaced by an IP address datatype, but

no other functionality has been added.

4.4 Distributed Memory Prototype

GraphSim, based on discrete, divisible networks, is an ideal candidate for distribution

over a logical structure such as a computational grid. This would this make the simula-

tor capable of running on systems superior to a desktop or even a single high capacity

server, thereby allowing levels of detail in simulations that could not be practically

implemented on systems without as much power.

However GraphSim was designed with single desktop computer use as a priority.

Making the system grid-distributable is not necessarily contrary to this priority, but it

would require a reconstruction of the underlying memory allocation system on which

the simulator runs.

Throughout the length of this research, memory-use has remained the bottleneck

in simulations. When the number of packets and simulated hosts in a system that

models malware grows exponentially, the memory capacity of computers used rapidly

becomes insu�cient. Simulations performed in Chapter 5 became untenable (taking

over 18 hours per simulated tick) once more than one million packets were being simu-

lated. While many computers were available for this purpose, few had more than four

gigabytes of memory. While more than adequate for most simulations, Internet worm

modeling (discussed more in Chapter 4) requires very large quantities of memory, as

worm scanning will refer to (and thus instantiate or at least require record for) many
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nodes and grows exponentially with the worm infection rate. Section 3.6.2 consid-

ers the challenge of memory shortage and points out that a full IPv4-space simulator

would require at least 128 gigabytes of memory. Assuming that computers available

for simulation had 2 gigabytes of memory, this would mean that 64 computers would

be required.

As a result, it was determined that grid distribution of memory was an important

concept for prototyping.

The original grid prototyping ran the entire simulator on every grid node that was

to be used. Lock-step processing (which would have slowed the simulation down due to

network input/output latency overhead) was avoided by executing a di�erent simula-

tion on the �slave� grid-computers (while a controller distributed simulation actions to

perform), which run an in�nite loop and instantiated nodes in memory when network

packets arrived specifying the address of the node. Furthermore, the representational

challenge of this prototype added an additional layer of complexity. By distributing

each simulator to a separate computer and allowing asynchronous simulation, the in-

consistency due to minor heterogeneity of simulators became a concern. Because the

simulators were operating on slightly di�erent systems (even if the hardware and soft-

ware were originally in a consistent state, networking and other physical aspects of

the systems would result in a non-uniform execution of the simulation), the results

would di�er from those which would be generated from a single large system, unless

the simulators would operate in lock-step. .

Because processing was not the bottleneck (commented on in Section 3.6.1), latency

was not considered to be a problem. Instead, the memory overhead of maintaining

multiple running execution engines became the primary concern.

The �nal grid-prototype that was used acted as a �node server�, which operated as

an entirely seperate program. The entirety of its function was to store address and

node information and return it, and no simulation was performed at any stage. By

distributing the storage of nodes and packets addressed to those nodes to the node

servers, the core simulator could be used for execution while holding only those nodes

which were to be simulated in detail. By using a modi�ed network node (discussed as

an evolved form of node in Section 4.3.2), which accepted packets to a network node

and then sent them as data to the storage nodes, it was possible to use an arbitrary

number of node servers. Intuitively, it was easiest to divide address space into equal

sizes, so the preferred number of node servers would be a power of two. The prototype

model used two node servers during development, and tested the extensibility using

four servers.

Figure 4.1 explains this concept: the original memory model used a single com-

puter's memory for storing node components. By distributing the memory use, multi-
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Figure 4.1: Distributed Memory Allocation System

ple computers can share their memory for node storage. The right half of the diagram

demonstrates that certain boundaries exist which determine which computer receives

speci�cally addressed nodes - in this case, the left �node server� receives nodes with

addresses lower than 192.168.0.4, while the right server receives those of that value or

above.

Figure 4.1 also demonstrates the abstraction in the memory access - from the pro-

grammatic perspective of the simulation, it has stored the node in local memory. By

abstracting memory access via nodes that represent entire networks, simulations can

�transparently� access more memory than their local systems have available using a

distributed system.

It was found to successfully improve the memory allocation signi�cantly, but as a

non-core component of this research, was not investigated any further.

4.5 Summary

In this chapter, the conceptual design of a robust network simulator has been drawn.

The choice of malware as the subject of research was covered in Section 4.2, with

complementary discussion of countermeasure development in Section 4.2.4, focusing

on a variety of methods available for research.

Once Internet worms were established as the focus of the research, the design of the

simulator itself began in Section 6.5. Having constructed the prototype stages of the

simulator, the evolution of the various modular plugins that were used was documented,

with notably more emphasis on nodes and connections than on packets and actions.

This work is evaluated in Chapters 5 and 6 which show the functional aspects of the

simulator, and its applicability to solving real-world large scale issues respectively.
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5 Testing, Calibration and Network

Simulations

5.1 Introduction

This chapter will document the planning, development and results of the earlier simu-

lations that are used by the developed simulator.

Section 5.2 provides a broad overview of the speci�cs used in networking for this sim-

ulation. Section 5.2.1 deals with the speci�c challenges of IP addressing, while Sections

5.2.2 discusses the parameters of speci�c elements of the simulations. The remaining

documented parameters give speci�cations for the engine to repeat the simulations

described later in the chapter.

Section 5.3 explains the format that this research uses for documenting simulations,

and Section 5.4 documents the simulations themselves.

Finally, Section 5.5 concludes the chapter with an overview of the executed simula-

tions.

5.2 Network Parameters

If simulations for research are to be run on the simulator framework, a careful de�-

nition of the parameters and de�nitions of the simulation's environment needs to be

documented, in order to ensure that these simulations can be repeated for testing

purposes.

This section will cover the overarching parameters of the system, fundamental to

any basic simulation. These de�nitions are necessary before discussing the simple

simulations covered in Section 5.4.

5.2.1 IPv4 Addressing Parameters

IPv4 simulations present many challenges, perhaps the most signi�cant of which is in

the structure of networks. In Paxson and Floyd (1997), the challenge of simulating

heterogeneous networks is discussed.
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It was decided that a simple tree structure for the network, using basic subnetting,

would su�ce for network structures. The Internet would be divided into 256 class A

networks, which would be divided into a further 256 class B networks, and so on. Each

subnet would have a `gateway' host, the �rst addressed host on the network (thus the

gateway for 192.168.0.0/16 class C network would be 192.168.0.0, and the gateway for

the 146.231.0.0/16 class B would be 146.231.0.0). This also means that the `parent'

node, through which all of the highest levels of packets pass, is 0.0.0.0. This presents

a signi�cant bottleneck if the number of packets forwarded in a discrete time unit is

limited to a certain quantity.

This is obviously a vast oversimpli�cation of real world network structures, however

for simple simulations, it can be considered su�cient.

Nodes in the IPv4 network are all implemented as subclasses of the abstract `IPv4'

node class, thus controlling nodes that may be added into such a network. By de�nition,

they all contain an address, as well as a connection link to their `gateway'.

In order to simulate the way in which a default route works, all packets are addressed

to the intended recipient, then sent via an IPv4 connection object to the `gateway' node

for the network on which the sending node is located. On message interpretation, the

gateway node then decides what to do with the packet, depending on the packet's

recipient node:

• If the recipient node is directly connected to the gateway that receives the packet,

such as 192.168.0.0 receiving a packet for 192.168.0.15 (in which case the message

is forwarded to the recipient)

• If the recipient node belongs to a di�erent subnet, such as 192.168.0.0 receiving a

packet for 146.231.1.15 (in which case the message is forwarded onto the gateway's

own `default route' to be processed again)

• If the recipient node is within the gateways subnet but not attached to the gate-

way, such as 192.0.0.0 receiving a packet for 192.168.0.1 (in which case the mes-

sage is forwarded to the next logical gateway in the sequence)

• If the recipient node is the gateway, then it interprets the packet as a standard

node

In order to reduce memory consumption, network nodes have also been developed.

Network nodes, another IPv4 sub-class, allow IPv4 packets to be received, and represent

any form of network, at any point in the IPv4 structure. Because of its abstract nature,

a network node could represent forms of network other than the tree type that the one-

to-one simulated hosts represent.
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5.2.2 Host Parameters

When considering hosts upon the simulated Internet, certain assumptions must be

made about the the hosts' properties. Because many of the worms that were to be

simulated required either a certain operating system or a certain software package to be

installed, when node objects were instantiated they had random properties associated

with them.

Two sets of assumptions have been made when determining the properties of nodes:

• The �rst set of assumptions regards the actual distribution of properties. No ac-

curate data is obtainable about the nature of computers connected to the Internet

- in Paxson and Floyd (1997), the authors comment on the largely unmeasurable

nature of the Internet. As a result, the values used were chosen with as much

accuracy to the current state of the Internet as was available.

The values were chosen with in�uences from Pang et al. (2004) and Net Applica-

tions (2008), researchers who have studied the Internet and attempted to make

inferences about its composition.

• The second set of assumptions is speculative - it is assumed that at some point

further development may take place using parameters that have not been used in

the simulations discussed in this document. As a result, parameters speci�ed here

may include operating systems, software, or other information not immediately

useful to this research, but may be useful for later simulations.

When a host is instantiated, it begins with randomly determined properties. Some of

these properties that are stated are not used in the simulations in this research - this is

for easier later development, and the chosen properties can easily be edited, changed,

removed or added to by adjusting values in a con�guration �le. These properties are

as shown below:

• 70% chance to be a Windows OS

If so, then:

� 5% chance to be Windows Vista

� 40% chance to be Windows XP

� 35% chance to be Windows 2000

� 20% chance to be some other version of Windows

� Whichever version of Windows, there is also the following chance of software

being installed on the system:

∗ 10% WebDAV (for Welchia infection)

∗ 30% IIS version 4 (for Code Red vII)
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∗ 5% ISS (for Witty)

• 20% chance to be a GNU/Linux OS

If so, then:

� 60% chance to be Ubuntu Linux

� 20% chance to be Fedora Linux

� 20% chance to be an unknown Linux distribution

• 10% chance to be some other OS

If so, then:

� 50% chance to be some version of FreeBSD

� 50% chance to be some other, less popular OS

5.2.3 Protocol Parameters

TCP/IP is the only protocol on the OSI stack to be simulated, corresponding to layer

three and four. This corresponds to the form of worms simulated - they operated

primarily using TCP/IP.

Only IPv4 was simulated - IPv6 would be a simple extension, but was not included

due to intial concerns regarding the large scale. It could be explored further using a

large enough system of the Grid based simulator as discussed in Section 4.4.

5.2.4 Tra�c Parameters

Non-relevant network tra�c was not representationally simulated. Latency and band-

width limitations are implied as delays and queues are in place, but due to e�ciency

challenges, they were not included in the simulations.

5.2.5 Time Parameters

Simulations were typically run in time `ticks', running from time one through ten

million), though in several cases where execution time became unreasonably high, sim-

ulation execution times were reduced to one million ticks and these cases are noted in

the speci�c experiments.

The time it takes for a packet to be sent over a single network connection is a single

tick. This can be increased (and is for some of the later malware simulations) in order

to model latency, showing that the system is con�gurable. Because time is abstracted

in these simulations, the meaning of a tick depends on the simulation - future users of

the system can associate a tick to suit their simulations' requirements.
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5.3 Test Format

Tests that will be performed will be detailed using the format below.

5.3.1 Statement of Subject

Figure 5.1: Simulation 1: Creating Components

The subject of the simulation is clearly stated in this section, speci�cally for purposes

of later testing. By stating the subject before simulation takes place, the results may

refer back speci�cally to the subject statement and thus be evaluated objectively and

independent of any other notable results observed in the simulation.

Where appropriate, diagrams will be included in the subject statement to clarify the

setup of the simulation. The symbols used in the diagrams can be seen in Figure 5.1.

5.3.2 Statement of Parameters

Any parameters speci�c to a simulation are outlined so that later researchers may

repeat these simulations for their own validation. This section will be as thorough as

possible, but will focus speci�cally on parameters that are di�erent from those used

previously, or di�erent from those normally used, detailed in the previous chapter.

5.3.3 Statement of Results

The results of the simulation will be stated, and shown in summary (either in table

form, in statistical analysis, or by visualisation). At this stage, conclusions will not be

drawn from the results further than noting anomalous behaviour or marked di�erences

from the expected results.

Where appropriate, ellipses have been used to reduce sample outputs for the sake of

brevity. In these cases, additional result examples may be found in Appendix B.
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5.4 Component and Network Simulation Testing

Before the simulator can be used to test advanced concepts (such as Internet worms), it

must �rst be con�rmed that it's basic components and fundamental operations behave

in an expected manner. The following tests were devised to determine this.

5.4.1 Rationale for Simulations

The simulations in this section were selected as a series of increasing complexity, testing

the fundamental components and behaviours of the simulator. The �rst simulation,

component creation, tests that the simulator is capable of creating and maintaining

components in memory. The second simulation, connectivity testing, tests the ability

of the simulator to successfully communicate over the network. The third simulation,

routing, extends the communication testing to a non-trivial level. Layered network-

ing tests the ability of the simulator to model modern multi-protocol networking by

modeling protocol encapsulation, which is an imperative part of a simulator that can

scale resolution. Network node simulation also tests resolution scaling by abstracting

an entire network, an important aspect in Internet-scale simulation. Finally, the last

simulation of this chapter combines routing and network nodes in preparation for the

testing in the following chapter which will make use of this pattern.

5.4.2 Component Creation

The �rst simulation that must take place is the creation of the components used in

the system. Nodes, connections, packets and actions must be instantiated, and tested

thoroughly within the bounds of the simulation. The core functionality of each (nodes'

ability to hold information, connections' capabilities to connect nodes and so on) must

be tested as well.

Statement of Subject

In this test, the creation of components is the core subject. Each type component

should be created and added into the system, then tested to see whether the simulation

can maintain these components intact in memory for the duration of its execution.

Furthermore, the claim that arbitrary parameters can be added to components

should be tested - some components must have semantics added and later extracted to

determine whether they remain stable in memory.
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Statement of Parameters

The test shall create a node, and assign it an address (an arbitrary piece of informa-

tion associated with the node, as not all nodes have an address intrinsically). It will

then attempt to extract this information from the node and test whether it remains

unchanged since input.

The test must then create another node, and create a connection that connects it to

the node that has already been created. A packet component should then be created,

and a message associated with it. Finally, an action component should be instantiated

and added to the simulation global scheduler - it should test whether the address

associated with the nodes remains the same after some simulated period of time has

passed.

Statement of Results

The output from the simulator is as shown below:

Node created

Address assigned

Address remains in the node

Created and connected another node

Creating default packet

Created a packet

Created an action

(A time tick passes)

Address A remains the same over time

Address B remains the same over time

This output (which uses a more verbose set of components than those used in later

simulations) explicitly shows each stage of the component instantiation and testing

process, demonstrating successfully that components of all types can be created in the

system, and their operation remains stable over time.

5.4.3 Connectivity

Connectivity needs to be tested as a core part of the networking simulation. Connection

objects would have been created as part of the last simulation test, but connectivity

must test the ability of the network to transfer packets between hosts. This level of

simulation does not require any speci�c actions to take place when packets arrive, or

generate more than a few packets - it just has to send them correctly from one node

to another, via a connection object.
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Statement of Subject

Figure 5.2: Simulating Connectivity

The focus of this test is to determine whether connectivity - a core concept in net-

working - operates correctly and successfully in the simulation. The simulator must

create nodes and connections, then pass packet components over those connections.

The node behaviour must be set to test and report the payload of any packets it

receives in order to determine whether the payload remains intact.

Statement of Parameters

The simulator must create some node objects (in the simplest case, two), and a connec-

tion object, connecting the nodes. It must then create a packet object with a �payload�

or messsage, and queue its sending on one of the nodes. The connection object must

then be used to extract the packet from the node, and successfully transport it to

the other node. Finally, the receiving node must extract the packet from its incoming

queue, and interpret it by testing whether the payload retains integrity.

Statement of Results

The output from the simulator is as shown below:

Sending packet.

Packet arrived, payload: Packet Payload

This output shows the sending node stating that the packet is in the process of sending.

When the receiving node receiveds the packet successfully, it prints the payload - this

shows the simulation successfully sent the packet.

5.4.4 Routing

Once connectivity has been established, routing can be implemented. As part of the

implementation of routing, it is required that several important aspects of modern
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networking are also included, particularly addressing and the concept of a �default

route�.

Statement of Subject

Figure 5.3: Simulating Routing

The test requires multiple nodes created, explicitly without a mesh network, as shown

in Figure 5.3. Through the use of default routes and routing tables, it is possible for

messages sent from host A to be sent to host B when A and B are not directly connected,

but a route does exist that connects them both.

The concept used for routing, in this case, is by attaching the attribute �default

route� to nodes in the simulation, stipulating which host should receive packets should

they not be directly connected to the host that the message is to be sent to. Hosts in

the system also require a �routing table� which speci�es which hosts they are connected

to, or which hosts in the route will eventually lead to the destination. Once a packet

arrives at a routing host, it can be forwarded to the correct remote router, which can

then send the packet on to the speci�c destination host.

Statement of Parameters

For this simulation, nodes can have one of two behaviours, depending on which at-

tributes have been assigned to them: if a node does not have a routing table, it will

pass all packets it receives to the node speci�ed in their �default route� attribute (which
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all nodes have), but if it has a �routing table� attribute (which stores speci�c nodes

with their addresses as keys) and the destination is in the routing table, it will attempt

to send the packet to its speci�ed destination.

When the simulation starts, it creates two networks (called A and B for this expla-

nation), each containing two �normal� nodes (with no routing tables) and one �router�

node (which has routing tables). It connects the normal nodes of A to the router

node of A, and similarly connects the normal nodes of B to the router node of B, then

connects the router nodes - all via connection objects. Finally, it creates two packets,

one in network A, another in network B, addressed to nodes in the network B and A

respectively. They are then instructed to send these packets.

The nodes in network A and B are set with their routers as default routes, while

the routers have their default routes set to the other router (which is unrealistically

simple, but will su�ce for testing).

The packets should arrive in their respective routers, then, when testing shows that

the destinations are not found in the routing tables, should be forwarded to those

router's default routes. When they arrive in the remote routers, they should then be

forwarded to the destinations speci�ed in the routing tables, and so then �nally arrive

at their destinations.

Statement of Results

The output from the simulator is as shown below:

Packet arrived. Routing. (Packet 1 Router A)

Packet arrived. Routing. (Packet 1 Router B)

Packet arrived. Payload: Packet Payload 1

Packet arrived. Routing. (Packet 2 Router B)

Packet arrived. Routing. (Packet 2 Router A)

Packet arrived. Payload: Packet Payload 2

This output shows packets arriving at various nodes. Where routing takes place, the

router is stated in parantheses at the end of the line. If the packet arrives at it's correct

destination, the payload is shown.

5.4.5 Layered Networking

Modern networking uses a stack abstraction to model the various layers of protocols

used in communication, detailed in Chapter 2. The conceptual model of a networking

�stack� is implemented by wrapping high-level protocols' tra�c in low-level protocols

packets. The simulation of this concept can be performed by allowing the �message� of
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the packet objects to be a generic datatype, which can (via object-oriented inheritance

of packet objects the generic datatype) include higher-level packet objects.

This simulation test will test the simulator's capacity to include tra�c at any level,

while encapsulating the data from higher levels.

Statement of Subject

Figure 5.4: Multi-Layered Network Simulation

In this test, the focus is on representing real-world multiple-layered protocols. This

is represented by introducing several levels of detail speci�c to certain layers of net-

working.

Packets no longer include addressing as a seperate sub-entity: addressing is now

made as part of the message, and extracted as a header. This is also complicated

by adding an optional (dependant on size) fragmentation element to the way in which

messages are passed. Messages, in this test, must be able to be passed using a high-level

of abstraction (to represent a high-level protocol using networking libraries to abstract

networking details), such as �Send the message `example' from host A to host B�, but

be `wrapped' in a lower protocol in the networking stack (as they would be by those

libraries) and be reassembled into its initial state on �nal reception. This process is

demonstrated in Figure 5.4.

This simulation passes a message with a high-level abstraction, which is then wrapped

in an addressed header and fragmented if necessary (as it would be using TCP/IP). On

reception, a node will �interpret� these packets by stripping the headers (but retaining

the information they store), reassembling the data, and �nally displaying the results.

Statement of Parameters

The simulation will use the network assembled for the previous test: four �normal�

nodes connected to two routers that are themselves connected. Two messages will

be prepared: one that is larger than 1500 bytes (which ensures that normal IP will

fragment it into multiple packets), and one that is smaller. Both must be sent, but
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must be transformed into the multi-layered form. Once they arrive, both packets must

then be examined and display the original message used.

Statement of Results

The simulator successfully routed packets between two non-adjacent nodes on the net-

work (using the routing established from the previous simulation). By displaying in-

coming packets at a �raw� level, then once they had been stripped of headers, then

again once a complete message had been reassembled, it was clear that multi-protocol

simulations were possible.

5.4.6 Network Nodes

One concern of simulation is the e�ciency of memory and processor use. One of the

most common ways to improve on this e�ciency is abstraction of large portions of

the network. Network nodes are nodes that play the role of abstracted networks. By

allowing a single node to behave as a whole network, the focus of the optimisation of

the simulator can move from node size and access to packet movement.

The abstraction of network nodes, however, can only hope to retain accuracy if

they can operate similarly to networks (in terms of the parameters of the simulation).

This added challenge must therefore include elements of randomness (with associated

probabilities to ensure measurable similarity to the object they model) that will lead

to possible di�erences from observed data.

Statement of Subject

Figure 5.5: Simulating a Network Node

In this simulation, a network node must be created and attached (via a standard

connection object) to a normal (�host�) node (as shown in Figure 5.5). It should
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receive addressed packets and interpret them by storing the information e�ciently (in

this case, by storing the packet information but discarding the packet payload). Once

the simulation has completed, the information stored by the network node must then

be displayed for analysis.

Statement of Parameters

A single host node and a single network node must be created, and attached via a

simple connection object. The network node's behaviour can be de�ned as pure storage

at this stage: it merely records the destination addresses of packets that it receives.

For testing, several million packets should be sent to show that a network node is an

e�ective means of packet information storage.

Statement of Results

[...]

15.63.177.88 -> 2

194.6.13.195 -> 2

26.76.165.177 -> 2

59.1.6.220 -> 2

Single IP hits -> 1999082

This output shows the number of received packets at each IP address (sorted in de-

scending order), and accumulates the number of IPs that received only a single packet.

This shows that a wide variety of broadly-spaced IPs received packets.

5.4.7 Mixing Node Types

The example shown in Simulation 5 (Section 5.4.6 above) initially appears contrived -

routing has been removed from the example, so all packets sent to the network node

are logged - even packets which are not destined for the network that it represents.

To display network nodes in the context of a complete network simulator, a more

elaborate example has been constructed using several of the networking simulation

fundamentals already tested. A network with several nodes, each with their own routing

and seperate node information should be constructed for this test, and a large number

of packets originating from each of them with a variety of destinations (both for the

network node and for the other hosts) allows a more stringent framework for testing

the usefulness of these components.
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Figure 5.6: Simulating a Mixture of Components

Statement of Subject

This test exists to bring together the individual aspects of networking simulation that

have been used so far and to construct a simulated network that can be used for later

simulations. Several host nodes (in the example used here, sixteen) should be created

and semantic information should be inserted, such as addressing, routing, etc. They

should be mesh-connected, and one of them should act as a router with an �Internet

connection� as a default route to a network node. This network node, then, should

collect packets and store their information.

A large number of packets should then be created (several million) and placed in the

outgoing-queues of randomly selected host nodes on the network. These packets should

be randomly addressed (some speci�cally to other nodes in the local network, others

speci�cally outside of the network), and once placed in the queues, should immediately

be sent.

Once the simulation has completed, the network node and the host nodes should

report on the number of packets they have received.

Statement of Parameters

The above statement of subject covers all required details and parameters for the

purposes of this simulation.
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Statement of Results

The results have been reduced for the sake of brevity, see Appendix B for additional

results.

[...]

79.71.252.97 -> 2

51.98.142.195 -> 2

87.204.163.26 -> 2

57.98.78.255 -> 2

17.197.37.120 -> 2

Single IP hits -> 979733

This output shows the number of received packets at each IP address (sorted in de-

scending order), and accumulates the number of IPs that received only a single packet.

5.5 Discussion of Results

In this chapter, aselection of tests were applied to the simulator developed for this work

in order to test the basic functionality. Simulations began with simple system tests to

con�rm the basic operations - plugins and communication - and then advanced to model

routing and protocol stacks, �nally modeling a single complex network connected to a

simulated Internet. The simulations found that the simulator was working as expected.

5.5.1 Simulation Results

The results of the networking tests are all as expected - the networking functions of

the simulator work as designed, and are capable of handling large volumes of tra�c

(millions of ticks and packets).

5.5.2 Simulator Results

The results discussed in this chapter show that the simulator meets the goals set out

for it in that:

• it is capable of a selection of network simulations

• it is able to operate at several levels of abstraction,

• it is scalable from the level of directly simulated networks and with the use of

abstraction to the operation of networks simulations at the Internet scale.
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The simulator that was developed also met several less tangible goals which were set

out for development (see Section 2.6.2): It was shown to be highly modular (with many

plugins already written for easy use by potential researchers - See Appendix C for a

brief listing), and exceptionally platform independant, executing simulations on at least

three di�erent primary operating system platforms. Actual test implementations were

run on Windows XP, Windows Server 2003, FreeBSD and Ubuntu Linux.

Finally, it was found that the simulator also supports rapid plugin development.

Node plugins, requiring the most complex development, typically required rewriting

up to two methods, each of approximately one hundred lines of C# code. Connection

and action plugins required less development, and packet objects never required any.

This is encouraging and meets one of the most important high-level goals of the work

- to be useful for rapid response security simulation in research.

5.6 Summary

The research and simulations performed in this chapter show that the basic assumptions

that the simulator needed to ful�ll in order to begin development of complex simulations

were in place. The simulator in Section 5.4.2 was shown to be capable of instantiating

a variety of modular plugins successfully. Section 5.4.3 demonstrated that it could

successfully model connectivity between two nodes, and Section 5.4.4 extended this

with packet routing. Section 5.4.5 demonstrated that the simulator was capable of

layered networking by wrapping data of a di�erent protocol within a packet. Finally,

Section 5.4.6 brought all these concepts together into a complex simulation. All of

these simulations made use of the parameters stated earlier in the chapter, in Section

5.2.

Based on the validation of the functional components of the simulator, the following

chapter presents simulations of malware and security countermeasures to that malware

that test the ability of the simulator to model these concepts in real life.
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6 Malware and Advanced

Simulations

6.1 Introduction

This chapter continues with the simulations described in the previous chapter. Whereas

Chapter 5 established the capability of the simulator to adequately represent network-

ing at a varying levels of complexity, this chapter elaborates, with simulations meant

to test the system's capabilities as a representational simulator.

Section 6.2 proposes the malware, worm and advanced simulations which will be

used in this chapter.

Section 6.3 introduces additional parameters used for the malware simulation in this

chapter.

Section 6.5 begins the documentation of simulations by introducing the visualisation

technique that is used throughout this chapter.

Section 6.6 focuses on worm simulation, covering the simple simulated case then

carrying on to simulate the Witty, Code Red vII, Blaster and Welchia worms, as

discussed in Section 2.4.

As this is the core of the chapter, the contents are explored here in more depth:

Initially, a conceptual worm was simulated to explore and test the concept of an

Internet worm. This is detailed in Section 6.6.1. This was then extended to model the

relatively simple �Witty� worm, in Section 6.6.2. The Code Red vII worm added degrees

of complexity in scanning algorithms, and its simulation is described in 6.6.3. Finally,

the Blaster and Welchia worms are detailed in Sections 6.6.4 and 6.6.5 respectively.

Section 6.7 introduces two �advanced� simulations - simulating a malicious worm and

a helpful worm simultaneously to gauge the e�ectiveness of this counter-worm strategy,

and modeling the e�ects of a network telescope.
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6.2 Proposed Worm Simulations and Expected

Outcomes

As a standard set of plugins was being constructed, a toolkit for worm simulation

became a possibility. A `worm propogation' action component was constructed, and

was designed for modularity. Once development of a general worm concept had been

completed, the worms to be modeled were selected. Presented here are the worms that

were chosen for simulation.

Simple Worm Simulation Showing the e�ects of a simple worm that randomly scans

and infects (such as that documented in Section 6.4.1), this initial simulation case

was designed as a test for the use of worms in the simulation, as well as a starting

point for further worm development. Simple scanning and perfect infection rates

allow this simulation to show the full e�ects of a random scanning worm, and

testing the full e�ects of a worm that could infect a large portion of the Internet

very quickly.

Witty Simulation Described in Section 6.4.2, the Witty worm should show very rapid

propogation compared to other worms (due to its connectionless infection), but

the spread should be more random. This worm adds an additional level of com-

plexity to the simulation by adding non-perfect infection. Documentation on this

worm can be found in Section 2.5.3.

Blaster Simulation The �rst `real worm' simulation to be run, simulating the Blaster

worm that is described in Section 6.4.4. This simulation adds additional layers

of complexity to the simulator by using a more complex scanning algorithm, and

adding additional requirements for the infection determination. In the case of

a single host simulated, it is expected to see a large quantity of packets sent

to a single class C netblock. For more accurate simulations, many full class C

networks should be completely scanned. Documentation on this worm can be

found in Section 2.5.3.

Code Red II Simulation Described in Section 6.4.3, the Code Red vII worm should

display more tra�c in the local networks than the Blaster simulation mentioned

above, for each single host infection. This worm adds additional complexity to

these simulations by adding a more complex scanning algorithm, resulting in ob-

servable patterns in the results which aid in testing. When simulating the e�ects

of Code Red vII over a fully simulated Internet, class A and B networks should

show much higher saturation than for Blaster or Simple worm cases. Documen-

tation on this worm can be found in Section 2.5.2.
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Generic Red vs. Blue Simulation In testing malware countermeasures, Red vs. Blue

worm simulations are of interest. By simulating two worms at once, this simu-

lation stresses the simulator and tests it's capability to simulate more complex

actions. Discussed in Section 4.2.4, this initial simulation will use Simple worms,

as discussed earlier, for both the malicious (classed as �Red�) and helpful (classed

as a �Blue�) worms. This simple case will test the mechanics of Red vs. Blue

worms instead of trying to extract any interesting semantic information about

helpful worms as a malware countermeasure.

Blaster vs. Welchia Simulation The Welchia worm (described in Sections 2.5.3 and

6.4.5) removed the Blaster worm from infected computers, being perhaps the

most famous of the �helpful� worms (though it did much damage in the process,

so the term �helpful� might be incorrect). This simulation will test the e�ects of

these two worms upon the Internet. It is expected that in cases where the worm

spread is at all limited, the intersection of the two worms' scans will be small, and

show little e�ect. If the two worms are allowed free reign over full-scale Internet

simulations, the amount of intersection should be much larger.

Blaster vs. Network Telescope Simulation Network telescopes (introduced in Sec-

tion 4.2.4) are one tool that is used in the defence against network-aware malware.

Network telescopes can be considered to be a special case of a Network node ob-

ject, so addressed packets to the node may be handled in a di�erent manner if the

node is �agged as a telescope. In this case, certain host nodes upon the simulated

Internet will have an additional parameter to those mentioned in Section 5.2.2 -

it will be marked as listening to the telescope. If the telescope is scanned by an

infected host, then the host's IP address will be added to a blacklist. Telescope-

�agged hosts will ignore all packets received from blacklisted hosts.

This simulation demonstrates the simulator's capability to model non-worm com-

plex components, as well as demonstrating a complex node type that has useful

and non-standard behaviours.

The expected result of this is largely dependent on the worms running in the

simulation. The Blaster worm, used in this case, is anticipated to have a slightly

slower propogation rate.

6.3 Further Parameter Speci�cations

The simulations presented here require further parameter speci�cations to remain re-

producable. In this section, additional parameters will be introduced.
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The parameters from the previous chapter detailed in Section 5.2 remain valid

throughout the simulations in this chapter.

6.3.1 Common Worm Parameters

A host, once infected, will continue to send out new packets continually (every time

tick in which the worm �activates�, dependant on the forms of the worms) and eternally

(never stopping for the entire simulation).

6.3.2 Setup Parameters

In the case of individual node simulations, the initial infection took place on a host

with IP address 192.168.0.1, a host on the list of IANA reserved private network ranges

(documented in (IANA)) - though technically it is simulated as directly �internet-

facing�.

In the case of subnet simulations, the Class C network 192.168.0.0/28 is simulated,

a subnet of an IANA-reserved network (explained in Rekhter et al. (1996)).

In the case of Red vs. Blue worms, the malicious worm's initial infection will be on

host 192.168.0.1, and the `bene�cial' worm initial infection will be on host 192.168.0.8.

These initial IP addresses are signi�cant, as the visualisations of the scanning will

show: many worms use localised scanning, so the simulated reserved network will

receive the majority of the scan attempts.

6.4 Programmed Worm Parameters

6.4.1 Simple Worm

The simplest worm has perfect infectability, infecting hosts regardless of details such as

operating system or software running. It may use either a random scanning algorithm

(selecting the next host to infect independant of the previously selected host), or an

incremental scanning algorithm (considering IP addresses to be 32-bit integers, starting

counting from 0 up to 232 − 1). Results are discussed in 6.6.1.

6.4.2 Witty

The Witty worm was discovered on the 19th of March 2004 and used an exploit in ISS,

an Internet security package, documented by Gatti et al. (2004), to gain access to a

host.Once the host was infected, Witty would overwrite a random section of the hard

drive, then send 20,000 UDP infection packets to randomly generated IP addresses.

Because the infection was contained in a single UDP packet, it spread very quickly.
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Once the 20,000 packets had been sent, it would seek to another random section of the

hard disk and overwrite it, beginning the cycle of overwrite-infect again.

Programming Speci�cs

For the Witty worm, if a worm infection packet arrived at a node, it would only infect

the host if its operating system was Windows (which we simulate as having a 70%

chance of occurring), running ISS (which is simulated to occur on 5% of Windows

hosts).

Using a Bayesian decision tree, it was then determined that the probability of a

computer being infectable by the Witty worm is:

0.7× 0.05 = 0.035

So when an infection packet was received by the Internet node, it would be considered

a successful infection of the Witty worm with probability 0.035. The simulation of the

Witty worm is detailed in Section 6.6.2.

6.4.3 Code Red vII

The Code Red vII worm has been extensively documented, as shown in Section 2.5.2.

Released on August 4, 2001, it exploited a bu�er-over�ow vulnerability in Microsoft IIS

servers Microsoft (2003c). Its scanning algorithm, explained in Friedl (2001), selects

new hosts to infect by doing the following:

For the purposes of this example, consider a Code Red vII-infected host with IP

address A.B.C.D:

The infected host generates a random IP address of the form W.X.Y.Z. It then

proceeds randomly, by selecting a value between 1 and 8, and scans as follows:

• If the value is one, it will scan W.X.Y.Z

• If the value is between two and �ve (inclusive), it will scan A.X.Y.Z

• If the value is between six and eight (inclusive), it will scan A.B.Y.Z

If the randomly generated address falls into the 224.0.0.0/8, or multicast address space,

or the 127.0.0.0/8, or loopback address space, then it will reselect the random address.

Programming Speci�cs

For the Code Red vII worm, if a worm infection packet arrived at a node, it would

only infect the host if its operating system was Windows (which had a 70% chance of

occurring), and it had IIS installed (which had a 30% chance of occurring).
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Using a Bayesian decision tree, it was then determined that the probability of a

Windows host running IIS was:

0.7× 0.3 = 0.21

So when an infection packet was received by the Internet node, it would be a con-

sidered a successful infection of the Code Red vII worm with probability 0.21. The

simulation of the Code Red vII worm is detailed in Section 6.6.3.

6.4.4 Blaster

The Blaster worm was discovered on the Internet on August 11, 2003, and uses an

exploit in Microsoft Windows' DCOM RPC Interface Bu�er to gain access to Windows

XP and Windows 2000 computers, as explained by Dougherty et al. (2003) and detailed

in Microsoft (2003a) and Microsoft (2003b).

The Blaster worm forms the scanning target's IP address through one of two ways,

according to Knowles and Perriott (2003):

• There is a 40% probability that it will choose an address A.B.R1.R2, where A

and B are the �rst and second bytes (respectively) of the address of the host that

is sending the attack, and R1 and R2are randomly generated in the range 0 to

255.

• There is a 60% probability that is will generate a random address.

The scanning algorithm selects it's targets as follows: a target host is selected by

generating a random IP address of the form A.B.C.0, where A, B and C are all random

integers in the range 0 to 254. There is a 40% chance, if C is greater than 20, that it

will be reduced by a random value between 1 and 20. It will then proceed to scan the

entire class C network, incrementing from 0 to 254.

The exploit that Blaster uses di�ers slightly between Windows 2000 and Windows

XP - every scan that takes place has a 20% chance to use the Windows 2000 attack

vector, and an 80% chance to use the Windows XP attack vector.

Simulation Programming Speci�cs

For the Blaster worm, if a worm infection packet arrived at a node, it would generate a

random number between 1 and 100 - it would only infect the host if it was a Windows

2000 host (a host was running Windows 70% of the time, and given it was running

Windows, it would be Windows 2000 35% of the time) and the number was less than

or equal to 20 or a Windows XP host (a host was running Windows 70% of the time,
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and given it was running Windows, it would be Windows XP 40% of the time) and the

number was higher than 20.

Using a Bayesian decision tree, it was then determined that the probability that a

scanned machine was an infectable Windows XP host was

0.7× 0.4 = 0.28

and the probability that the host was infectable and ran Windows 2000 was

0.7× 0.35 = 0.245

So when an infection packet was received by the Internet node, it would be a consid-

ered a successful infection of the Blaster worm with probability 0.28 + 0.245 = 0.525.

The simulation of the Blaster worm is detailed in Section 6.6.4.

6.4.5 Welchia

The Welchia worm was devised to counter the Blaster worm. Documented in Perriot

(2008), it was �rst discovered on August 18, 2003, and uses a variety of exploits to gain

access to Windows 2000 and Windows XP hosts, most notably the same exploits used

by the Blaster worm (see Microsoft (2003a) and Microsoft (2003b)).

When Welchia infects a host, it deletes any trace of the Blaster worm from the host's

hard drive and memory. It then proceeds to scan for further infections - its scanning

algorithm (explained in Perriot (2008)) chooses one of the following two patterns for

infection:

• Consider the current host to have IP address A.B.C.D - Welchia then incremen-

tally scans A.B.0.0 through to A.B.255.255

• Selects a random IP address

Once a target has been determined, Welchia continues by exploiting either the same

vulnerability that Blaster uses (and leaves open), or a vulnerability in WebDAV, a

component in a webserver.

As Symantec does not state the probability of the scanning algorithms, various values

have been assumed. From simulation experiments performed in this research, some

success has been found with a 2% incremental scan probability and a 98% random

scanning probability.
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Programming Speci�cs

The Welchia worm used the same DCOM RPC exploit as Blaster did, with the inclu-

sion of an additional exploit in WebDAV (a component of the IIS web server). The

IIS/WebDAV exploit was much more targeted than the Windows RPC exploit, and

as a result would, using the parameters speci�ed above, only infect a small proportion

more of the Internet than Blaster. The simulation of the Welchia worm is detailed in

Section 6.6.5.

6.5 Simulations

In this chapter, the simulator that was designed and detailed in the previous chapter is

rigorously tested through a variety of simulations. The results of these simulations are

then compared to some metric (depending on the subject of the simulation this could

be captured data, a conceptual �common-sense� model, or an analytical model), and

the di�erence evaluated in the next chapter.

The format used for these simulations remains the same as that used in the previous

chapter, as described in Section 5.3.

6.5.1 Statement of Results

The results of the simulation will be stated, and shown in summary. Where the design

of a simulation is not immediately apparent, diagrams have been used to display the

con�guration and execution of the simulation.

Hilbert Curves

A Hilbert curve (or �Hilbert Space-Filling Curve�) is a novel way to e�ciently represent

a large quantity of 1-dimensional data using a 2-dimensional fractal curve. In Irwin

and Pilkington (2008), the authors describe a Hilbert curve as �a continuous fractal

curve, the limit of which �lls a square.� The important property of the curve that

is relevant to IP space visualition according to the aforementioned authors, is that it

�maintains locality of data on the curve - this means that data ordered a certain way in

one dimension will still be ordered the same way along the curve in two dimensions.�

(Irwin and Pilkington (2008)).

The Hilbert curves used here allow an ordered visualisation of all of IP space (with

some loss of detail due to the high resolution required) by fractally dividing a square

image into blocks of available IP addresses (ordered by signi�cance of byte in the IP

address), with the lowest values starting from the top left to the highest values in the

top right.
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An example of a Hilbert curve representing the �rst octet of an IP address can be

seen in Figure 6.1, as shown in Irwin and Pilkington (2008).

The �order� of the curve is the number of fractal iterations it has undergone, which

(for a two-dimensional Hilbert curve) multiplies the number of �points� by four per

increased order. A �rst order Hilbert curve has 4 points - the 4th, 8th, 12th and 16th

order curves have numbers of points corresponding to the number of class A, B and C

networks and individual hosts on the Internet respectively. which further adds to their

suaitability for use in IP network address visualisation.

Figure 6.1: Order 4 Hilbert Curve

Thus, the curve shown in Figure 6.1 can then be further divided for the next most

signi�cant octet (which will be order 8) and so on. For the purposes of illustration in
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this document, Hilbert curve visualisation will be limited to order 12 (each point on the

curve representing a group of 256 hosts which provides a logical mapping to a network

of size /24 in CIDR notation or a traditional Class C network) instead of individually

rendering each host, as the resultant curves would be too large (and the points too

small) for easy study. Where appropriate, further Hilbert curves with magni�cation

are also provided for explanation.

6.6 Worm Testing

As discussed in Section 4.2, Internet worms are an appropriate choice for subject simu-

lation, as they put stress on a simulation system and are well-documented for compari-

son. As a result, several worms were used to test the developed simulation system. The

worms chosen for simulation were selected on the basis of documentation and scaling

complexity: those worms which had scanning algorithms, exploits and other informa-

tion published allowed for better simulation modeling opportunities. The Witty worm

was selected due to its simplicity, while the Blaster and Welchia worms were selected

due to their complexity in contrast to the Witty worm.

6.6.1 Simple Worm

The simple worm case uses a worm with 100% infection probability, which randomly

scans across the entire IPv4 address space. While simplistic, this worm provides a

suitable starting point for the development of more complex worm simulations as it

already addresses the initial problems: generating packets in exponentially-growing

quantities, infections a�ecting certain speci�c nodes, and so on.

Statement of Subject

The scenario to be simulated can be described as follows: a single host node in the

network detailed above (in simulation 6, Section 5.4.7) has been infected with a Simple

Worm. Simple Worms have a perfect infection rate (so every host that receives a

packet will immediately be infected, regardless of operating system, software, Internet

�rewalls, etc.), and they spread by randomly scanning the Internet. The Simple Worm

also scans quickly: every simulated �tick� or time-period in the simulation will result

in every host that has been infected randomly infecting another host.

While this is an unrealistic example, it serves to provide a framework for all further

worm simulation: functions for scanning algorithms, likelihood of infection, and seper-

ate behaviours for host and network nodes will already be in place and can easily be

adapted for parameters of �real worms� for rapid development of real worm simulations.
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Statement of Parameters

The network as described above should be reconstructed (sixteen mesh-connected host

nodes with a router passing non-local tra�c to a network node), and one randomly

determined node should be speci�ed as �infected�.

The worm simulation should run for a large number of cycles (at least a million ticks),

and the results should then be documented. Due to the random scanning nature of the

worm, and the small size of the local network, it is unlikely that the worm will scan

a host node. Behaviours should be in place for this eventuality, and if a host node is

infected, it should immediately join the initial randomly chosen node in creating new

infection packets to send out.
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Statement of Results

Figure 6.2: Simple Worm Hilbert Curve

The Simple Worm, executing 1 000 000 ticks (implying 1 000 000 uniquely scanned

hosts) resulted in 1 000 000 infections distributed randomly. Note that only one million

ticks were simulated (most other simulations using ten times the number of ticks), as

the simulation became untenable due to the massive rate of infections, combined with

the perfect infection rate. The results are summarised in a Hilbert Curve, Figure 6.2.
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Figure 6.3: Simple Worm Hilbert with Magni�cation

The Simple worm results are as expected - the worm has scattered values randomly

but uniformly across the entirety of IP space, with a very high density due to the perfect

infection rate and very high scan rate. They can be seen visualised and magni�ed in

Figure 6.3.

6.6.2 Witty Worm

The Witty worm is mostly an extension of the simple worm, as it is also a random

scanning worm. Signi�cant di�erences between the worms can be noted in the infection

rate (Witty worm has several very speci�c requirements for systems which it can infect,

and as such has a much lower infection rate per packet sent out), but a much higher
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rate of packet sending, to represent the multi-threaded, small-packet way in which it

is spread.

Statement of Subject

The Witty worm is (in terms of parameters) very similar to the Simple Worm described

in simulation 7 (Section 6.6.1). It also uses random scanning, and also has a very fast

scanning rate.

The signi�cant di�erence is in the infection rate. As described in the previous chapter

(Section 6.6.2), the Witty worm has a low rate of infection (requiring both a Windows

host, and the ISS software to exploit) of 3.5%. This is represented in 96.5% of packets

that are received by the network node being �dropped� instead of logged, as they would

have been ine�ectual in infection.

Statement of Parameters

The network described and used in Section 5.4.6 will su�ce for this simulation, and

the only signi�cant di�erence to be implemented between these two worms is a much

smaller infection rate.

Again, only one host will be infected. This host will then proceed to attempt to infect

other hosts, but the likelihood of local infection (and thus an increase in scanning rate)

is low due to the random scanning algorithm.
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Statement of Results

Figure 6.4: Witty Infection Hilbert Curve

The Witty Worm, executing 10 000 000 ticks (implying 10 000 000 scanned hosts)

resulted in 129 970 infections distributed randomly.

The results are summarised in a Hilbert Curve, Figure 6.4.

The Witty worm is similar in all ways to the Simple worm (in that it randomly scans

uniformly across IP space, very rapidly), with an obvious lack of density due to the

comparatively low infection rate. As a result, no magni�cation of the results of this

simulation is necessary.
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Commentary

The Witty worm scanned randomly - so the expected results were a randomly dis-

tributed series of scans. Figure 6.4 con�rms that the simulator was e�ective. Analysis

of the outputs reveals that the highest number of scans on a class C network was 3,

and the average number of scans per class C network was 1.00404 - indicating a very

broad, but very �shallow� random scan.

6.6.3 Code Red vII

The Code Red vII worm is the �rst simulated worm with a more intelligent scanning

algorithm. While it has a higher infection likelihood than Witty, it speci�cally avoids

certain IP blocks (127.0.0.0/8 and 224.0.0.0/8 speci�cally, as these are special IANA

reserved networks - localhost and multicast networks respectively - documented in

(IANA)), and is more likely to scan locally than random scanning, as shown in the

work done by Friedl (2001).

Statement of Subject

The Code Red vII worm is the �rst worm that will be simulated with a �scanning

algorithm� or pattern. It has a higher likelihood of scanning conceptually �nearby�

hosts than the Witty or Simple worms. It also exploits software more common than

Witty's (Code Red vII used an exploit in the Microsoft IIS web server, as documented

in Microsoft (2003c)), resulting in a much higher infection rate of 21%, but distributed

a much larger binary, and as a result transfer speeds were longer than Witty.

Statement of Parameters

The Code Red vII scanning algorithm was implemented as the real worm was pro-

grammed: the worm chose a random value between 0 and 7, then used the following

decision-making to determine the addresses to scan:

• if the value was 0, it would choose a random IP address to scan

• if the value was greater than 0 and less than 4, it would use the �rst byte of the

sending host in the scanning address and the remainder of the IP was randomly

generated

• if the value was 4 or greater, then the �rst two bytes of the sending host were used

in the scanning address and the remainder of the IP was randomly generated

To represent the higher infection rate, only 79% of the Code Red vII worms' packets

that are received by the network node are ignored. Finally, to represent the (relative)
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lack of speed in the spread of the worm due to bandwidth limitations, the time between

a node sending a worm packet and its arrival (and therefore its infections) is increased

from a single tick to a random number of ticks between 5 and 7.

Statement of Results

Figure 6.5: Code Red vII Infection Hilbert Curve

The Code Red vII Worm, executing 100000 ticks (implying approximately 17000 uniquely

scanned hosts) resulted in 4016 infections clearly clustered around the networks nearby

to the infecting computer (the 192.168.0.0/16 network, in this case). The results are

summarised in a Hilbert Curve, Figure 6.5.

105



Figure 6.6: Code Red vII Hilbert with Magni�cation

The Code Red vII worm shows the results of the scanning algorithm presented here.

Referring to the magni�cation of the visualisation of Simulation 9's results (Figure 6.6),

it can clearly be seen that the local class A network has been preferred, with a focus

on the local class B network, which can be seen as the darkened portion of the class A

network.

The other immediately noticeable part of the results is the lack of any activity in the

127.0.0.0/8 and 224.0.0.0/8 networks, as the scanning algorithm of the Code Red vII

worm speci�cally avoided both. This is seen as the large white blocks in the Hilbert

curve.
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Commentary

The Code Red vII worm was designed with three scanning modes that it chose ran-

domly: local (class C), local (class B) and entirely random. Thus, the expected output

was an intense, very focused local scan, a less intense loosely focused local scan and

a random scanning pattern otherwise, with the exception of two speci�c IP blocks:

the 127.0.0.0/8 network and the 224.0.0.0/8 network. Figure 6.6 con�rms that the

simulator has successfully simulated this.

6.6.4 Blaster

The Blaster worm, like the Code Red vII worm, has a higher infection rate than the

Witty worm, and also prefers local to global scanning.

Statement of Subject

The Blaster worm simulation uses a conceptually simpler but technically more advanced

scanning algorithm than the Code Red vII worm: it picks a random class C to begin

scanning, and completely scans all 254 IP addresses before randomly selecting another

network.

The Blaster worm was another (relatively) large worm that had to use multiple

packets for infection (thus slowing down propagation), but also had a very high in-

fection rate (because of the prevalence of Windows computers, the infection rate was

approximately 52.5%).

Statement of Parameters

The Blaster scanning algorithm operates as described above, with one additional mod-

i�cation: in 40% of cases where the third byte of the IP address was greater than

20, the value would be reduced by 20. Because many networks assign IP addresses in

ascending order, this resulted in a greater likelihood of infection. This was taken into

account in the scanning algorithm. In a similar manner to the Code Red vII simula-

tion, 47.5% of the Blaster worms' packets that are received by the network node are

ignored. To represent the (relative) lack of speed in the spread of the worm due to

bandwidth limitations, the time between a node sending a worm packet and its arrival

(and therefore its infections) is increased from a single tick to a random number of

ticks between 5 and 7.
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Statement of Results

Figure 6.7: Blaster Infection Hilbert Curve

The Blaster Worm, executing 100000 ticks (implying approximately 17000 scanned

hosts) resulted in 9772 infections clearly clustered into a few networks, the only ob-

servable pixels in the curve. The results are summarised in a Hilbert Curve, Figure

6.7.
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Figure 6.8: Blaster Hilbert with Magni�cation

The Blaster worm Hilbert curve (Figure 6.8) appears to simply be a random, uni-

formly distributed series of received packets. This appears so as a result of the granu-

larity of the Hilbert curve - the visualisation cannot show scans deeper than at a Class

C level.

Each �dot� on the curve shows a Class C network. If we examine the Blaster worm

scanning algorithm discussed in Section 6.4.4, we see that it completely scans a full

Class C network. Upon closer examination of the results, it can be seen that each Class

C network represented in the Hilbert curve has received many packets compared to the

Simple or Witty worms, where the Class C networks received much fewer packets each,

but the distribution was much broader.
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Commentary

The Blaster worm did a complete scan of a full class C network before randomly

selecting another class C network to scan. While Figure 6.7 doesn't completely show

this due to scaling problems, the magni�cation in Figure 6.8 shows that each individual

host in the network has been scanned - though only a portion of these are �infected�,

as the Blaster worm only exploited vulnerabilities in Windows hosts.

Thus, we can conclude that the simulation results are as expected - the Blaster

worm appears to select a random class C network to scan and then scans it completely,

infecting those nodes which would be vulnerable.

6.6.5 Welchia

The Welchia worm, while technically lacking a purpose (and a large body of infectable

hosts) without the Blaster worm, is another worm with a local-scanning priority and

good infection likelihood.

Statement of Subject

The Welchia worm was designed to counter the Blaster worm, and as a result normally

exploits a weakness that the Blaster worm exposes in systems that it infects. As a

result, the simulation of a Welchia worm without a Blaster worm relies on the other

form of infection that it used: a vulnerability in the WebDAV component of IIS version

5.0. This results in a much lower infection rate than if Blaster-compromised hosts were

available for the simulation.

The Welchia scanning algorithm operates similarly to Blaster, except that it scans

entire class B networks (i.e. 65536 hosts instead of 256). Otherwise, it is similar in

most respects to the Blaster worm.

Statement of Parameters

The Welchia worm will use the same simulation network as the other worm examples,

but operates by randomly selecting a class B network and completely scanning it: 256

networks of 256 hosts results in a very thorough network scan.

The Welchia worm ran multiple exploits in an attempt to gain access to the system.

This includes the DCOM RPC exploit used by the Blaster worm, referenced in Section

6.6.4 above. The other exploit it made use of was the WebDAV vulnerability in a

speci�c version of IIS.

This series of simulations assume that Windows hosts account for 60% of the Internet,

and that 2% of those hosts have the correct version of IIS with exploitable WebDAV

installed, resulting in a 1.2% infection rate assuming that Blaster is not a factor.
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Thus, the 52.5% that is calculated above (from the DCOM RPC vulnerability) com-

bined with the 0.57%1 representing the still-vulnerable hosts with the WebDAV vul-

nerability result in a 53.02% infection chance.

Statement of Results

Figure 6.9: Welchia Infection Hilbert Curve

The Welchia Worm, executing 100000 ticks (implying 17000 uniquely scanned hosts)

resulted in 238 infections (much less than the rest), all located in the same class B

1The remaining unexploited hosts represent 47.5% of hosts, with a 1.2% chance of infection: 0.475×
0.012 = 0.0057
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network - the dots on the curve represent approximately 64 class C subnetworks in the

190.31.0.0/16 network. The results are summarised in a Hilbert Curve, Figure 6.9.

Figure 6.10: Welchia Hilbert with Magni�cation

Contrasted to the Blaster results from the above section, the magni�ed Welchia re-

sults (Figure 6.10) show the Welchia worm's results with much greater clarity. The

Welchia worm's scanning algorithm (see Section 6.4.5) show that it scans complete

Class B networks - comprised of a block of 256 Class C networks - and with magni�ca-

tion, it becomes evident that this is what has occurred. By looking carefully at what

might otherwise appear to be large �dots�, we can see that the Welchia worm scans the

Class B network, but each Class C network within it has di�erent degrees of infection.

This corresponds with the expected results.
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Commentary

The Welchia worm completely scanned complete class B networks, which it chose at

random. This leads to the expectation that the results of simulating the Welchia worm

would be a few, randomly distributed networks which would be intensely scanned.

Figure 6.9 supports this - we can see that the Welchia worm has scanned uniformly

and randomly. This is further con�rmed in Figure 6.10, where magni�cation shows

that the �dots� where the worm scanned can be seen as thoroughly scanned. In a

similar manner to the other �real� worms in this chapter, it does not scan perfectly, as

it requires a certain software con�guration to be e�ective. This e�ect is seen by the

white areas in the magni�ed curve.

6.7 Advanced Simulations

In this section, advanced simulations which are beyond the scope of Internet worms

are documented. These advanced simulations have been chosen to demonstrate the

practical value of this simulator - the concepts presented here are all valuable tools

in the �eld of network security, and by testing the e�ectiveness of these tools, the

simulator can be used as a fully-�edged research tool.

6.7.1 Red vs. Blue (Simple vs. Simple)

The concept of Red vs. Blue worms pertains to the ��ght �re with �re� strikeback

concept of worm countermeasures. By creating a worm that uses the security holes

created by another worm, deleting the malicious worm, spreading and then deleting

itself, it hopes (conceptually) to work as a form of defence against malware.

Initial testing of the concept can use a pair of simple worms. Random scanning

means that there is a very low chance of collision between these two worms, but the

simpler implementation allows for more rapid testing of the concept.

Statement of Subject

The purpose of this simulation is to test the viability of a worm vs. worm concept.

Meaningful results are not expected, however in the following simulation a more inter-

esting and practical simulation will use the principles developed in this one.

The core subject of this simulation is a pair of lists of infected hosts, and speci�cally

noteworthy are any �collisions� in the lists - where an entry appears in both, the worms

have intersected. This would imply that the �blue� or helpful worm (helpful worms are

considered in Section 4.2.4) is e�ective in removing an infection from a host.
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Statement of Parameters

In this test, two nodes are infected with perfect random scanning worms (similar to

that used in Section 6.6.1, Simulation 7), each marked with a di�erent �colour�, which

is also speci�ed in the packets they send. They are connected to a small local network

(16 nodes) with an attached network node. These nodes then proceed to send packets

which are collected by the network node, and are sorted into one of two infection lists,

depending on the worm's type.

At the end of the simulation, both worms are listed and any collisions are noted.

Statement of Results

The simulation completed and no worm intersection/collision occurred at all, over the

course of ten million ticks (approximately 9.9 million infection cycles for each worm).

A very large portion of the Internet was scanned by both worms (approximately 25%

of all Class C networks experienced a scan from each worm).

Commentary

This �rst �Red vs. Blue� example was developed to prototype the concept - the expected

results were few collisions, with general random scanning, with no useful results beyond

testing the operation of the simulation. This was con�rmed - no collisions occurred,

and the simulation did not produce any noticeable patterns.

6.7.2 Red vs. Blue (Blaster vs. Welchia)

The classic Red vs. Blue worm case, the Welchia worm was released �into the wild� in

order to combat the Blaster worm. By exploiting a �back door� that the Blaster left

open, the Welchia worm rapidly spread across the Internet.

Statement of Subject

This simulation attempts to recreate the Blaster and Welchia worm scenario. The core

focus of this simulation is on the e�ectiveness of the Welchia worm in �nding Blaster-

infected hosts, and to determine whether its e�ectiveness as a worm counter-measure

mitigates the possible problems that unleashing a worm presents.

Statement of Parameters

In a similar setup to the parameters used in Section 6.7.1, two nodes on a network

are infected with Blaster and Welchia worms and ten million ticks are executed by the

simulation engine. The signi�cant di�erence is the inclusion of non-perfect infection
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rates (corresponding to the values considered in Section 5.2.2) and the worm-speci�c

scanning algorithms.

Statement of Results

Figure 6.11: Red vs. Blue Worm Hilbert Curve
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Figure 6.12: Colour Red vs. Blue Worm Hilbert Curve
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Figure 6.13: Colour Red vs. Blue Worm Hilbert Curve with Magni�cation

The visualised results in Figure 6.11 are similar to a union of the Blaster and Welchia

worms simulated in Sections 6.6.4 and 6.6.5 respectively (as expected). Figures 6.12

and 6.13 show the results in colour, with Figure 6.13 magnifying a particular portion

of the network for further study.

One set of collisions occurred over the entire ten million tick simulation.

Commentary

The applied Blaster Red vs. Welchia Blue scenario presented in this simulation is based

on the Simple worm case developed in the previous simulation with extensions for the

two worms.
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It was expected that the Blaster worm and Welchia worm would operate as they

did in the simulations where they were used in isolation, but in the case of collision,

a high number of collisions would occur in a very small number of ticks. Because the

Blaster and Welchia worms both scan entire networks (class C and class B network

respectively), if a collision were to occur, the entire network of infected hosts would

be collisions. This was found to be the case for the 151.62.222.0/24 network, where

164 collisions took place. This high collision rate (note that the other 92 non-collisions

in the network would almost certainly be due to hosts that were not con�gured to be

vulnerable to the exploits used in the worms) con�rms that the simulation operates as

expected.

6.7.3 Network Telescope

The �nal simulation concerns a form of Worm countermeasure testing. Network tele-

scopes, discussed in Chapter 2, can be used to �nd infected hosts (or hosts with ma-

licious intent) and block them from sending tra�c to a group of other hosts using

�Real-Time Blackhole Lists�.

This simulation tests the e�ectiveness of this technology as a means of limiting the

amount of damage a worm can cause.

Statement of Subject

The focus of this simulation is the network telescope component. It operates in

the following way: if any packets are routed to a speci�c network (in this case, the

146.231.0.0/16 Class B network) then the sending host is recorded. Another set of net-

works (in this case, the 196.115.0.0/16 Class B network) �subscribes� to the telescope's

list (or RBL, �Real-time Black-hole List�), and will not be infected should they receive

packets from the hosts on the telescope's list.

The test associated with this simulation is to determine the usefulness of network

telescopes as tools for worm deterrence. If the telescope causes a notable di�erence in

worm scan patterns, then it will be deemed as an e�ective tool.

Statement of Parameters

A single host on a small simulated network of 16 hosts is infected with a perfectly

infectious random-scanning worm. The networks speci�ed above will be created with

the special cases they require (network telescope with RBL and RBL subscriber), and

the worm will be executed for one million ticks (corresponding to approximately 990

000 infection cycles). This is reduced from the default due to the rapid propagation

and perfect infection of the worm.
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Statement of Results

Figure 6.14: Network Telescope Hilbert Curve
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Figure 6.15: Magni�ed Network Telescope Hilbert Curve

The �nal result shows a similar �snow� or �static� e�ect as seen in the Simple worm

simulation (Section 6.6.1) when visualised in Figure 6.14. Throughout the course of

the simulation, the network telescope was observed for usefulness, and it was found to

be e�ective - approximately one hundred and �fty infection packets over the course of

the full simulation were rejected as a result of the RBL.

While initially it appears that the scanning pattern shows no e�ect, the protected

network can clearly be seen when magni�ed, as shown in Figure 6.15.

This shows that the network telescope component did operate successfully, and e�ec-

tively stopped the randomly scanning worms from infecting their �protected� network.

If the worm had used an ordered infection pattern (such as those used by the Blaster
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or Welchia worms) and the telescope was scanned �rst, then it would have been more

e�ective as a denser clustering of scans on the speci�c networks (telescope and sub-

scriber) could be expected. However, if the worm had �rst infected the protected

network, it would have had no e�ect at all.

Commentary

The network telescope simulation used a simulated network telescope to act as a worm

countermeasure. Within 10 000 ticks, all infectable hosts on the local network (16

in total) had been infected, and within 50 000 ticks all had been detected by the

telescope. As a result, no packets were detected in the 196.115.0.0/16 network - where

other networks typically experienced a range of `hits' between 130 and 180 packets,

the 196.115.0.0/16 network received no packets before the telescope had detected the

infecting host and added it to the RBL.

This is not what was expected - it is signi�cantly more e�ective than originally

thought! The simulator did register approximately 150 hits that were blocked due to

the RBL, which is the expected response in the expected quantities. This does con�rm

the e�ectiveness of the telescope, as well as the simulator's capability of modeling it.
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6.7.4 Advanced Simulations Results

Figure 6.16: Red vs. Blue worm with Magni�cation

The advanced simulations (Red vs. Blue worm and network telescope simulations)

both showed that the proposed worm countermeasures, while e�ective if targeted, were

rarely useful due to the large size of IP space. In Figure 6.16 it is quite clearly possible to

see the Class B network that the Welchia worm infected, with nearby Class C networks

infected by Blaster. Throughout the entire course of the simulation, no collision took

place.

This does not mean that these worm defence tools were ine�ective - it rather means

that they did not have an e�ect on an Internet scale. They provided excellent security

for speci�c networks on the Internet, but were limited due to their lack of ubiquity.

122



6.8 Other Simulators

In Section 2.6, two other major simulators were mentioned: ns-2 (as a simulator) and

SSFNet (as a simulator library). A further simulator was considered for comparison

in this research: the commercial network simulator OPNET (OPNET Technologies

(2009)). Due to restricted access, it was rejected as a possible simulator for comparison.

The other simulators (ns-2 and SSFNet) were available for comparison in this re-

search, but were not used due to resource and time constraints. The peculiarities of

their use (ns-2's use of dual-languages and emulation focus, and SSFNet's develop-

ment requirements) meant that this research could not be easily recreated for their

frameworks.

In addition to this, the indices used for simulator testing were not comparable.

The simulations that were executed were heavily investigated for accuracy to expected

results - and were found to meet these expectations. There is no reason to assume that

ns-2 or SSFNet would have yielded any di�erent results.

6.9 Summary

To conclude the series of tests prepared and executed on the developed simulation

framework and engine in Chapter 5, we can see that it successfully executed a wide

variety of simulated networking examples spanning normal networking (such as the

routing and protocol simulations) as well as malware-speci�c simulations (such as the

various worm scanning algorithms).

The results discussed in this chapter show that the simulator meets the goals set out

for it, namely it has been stress-tested using Internet worms, and has been found to

be capable of simulating large models while still achieving the expected outcomes for

each test.

The next chapter concludes this work, commenting on the results achieved in this

and the previous chapter, considering the achievements, shortcomings, and possible

extensions to this work.
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7 Conclusion

7.1 Introduction

In this �nal chapter, the conclusions regarding this work are drawn and analysed. In

Chapters 5 and 6, the simulations around which this work revolves were executed - in

Section 5.5 these results are discussed.

Section 7.4 covers the potential extensions to this research and the deliverable simu-

lator that it has created, while Section 7.5 suggests the applications that this work has

in academia and research, contrasting the bene�ts against the stated shortcomings in

Section 7.6.

Finally, Section 7.7 draws the �nal summary of this research together, concluding

this work.

7.2 Goal Review

The goals stated in Section 1.4 bear re�ection upon completion of this research. The

two goals, as stated, were the development of a set of recommendations for construct-

ing robust Internet-scale simulators, and the development of a simulator using those

recommendations. They are reviewed and considered here.

7.2.1 Recommendations

Chapters 3 and 4 related a variety of experiences that a developer of a generic network

simulator should experience, as well as documenting how the challenges were overcome.

Chapter 3 states the software recommendations of developing the simulator, while

Chapter 4 discusses the speci�cs of how the simulator was constructed.

The set of recommendations proved to be su�cient for the construction of the simu-

lator, detailed in the next section. The recommendations covered both the theoretical

(design) and the practical (implementation) aspects of simulator design, on a broad

level as well as including many practical observations.

As such, the development of recommendations for the construction of these simula-

tors can be considered successful. They can be used by other researchers in this subject
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area as a basis for their own simulator development.

7.2.2 Simulator

The simulator that was to be developed as a goal for this research was completed

early in the research and then continually improved, as explained in Chapter 3. It has

evolved through iterative development cycles to allow for easier development and more

e�cient access to resources.

The evidence of the success of the simulator can be found in Chapters 5 and 6. The

results of Chapter 5 show that the simulator is capable of a broad variety of aspects

of networking and the results of Chapter 6 show that the simulations it performs are

capable of focused research into a particular domain.

Speci�cally, the simulator succeeded in its chief goal - it is both robust, capable of a

diverse range of simulation, and large in scale, capable of simulating millions of events

across the full IPv4 Internet. It has been shown to be scalable, via the distributed

memory prototype, but that component of the system must still be matured before

becoming a core part of the simulator.

The simulator has shown itself to be capable of Internet malware simulation, achiev-

ing every expected outcome presented in this document.

This goal, then, can also be considered successfully completed.

7.3 Re�ections

Chapter 2 reviewed some of the literature available on network simulations, Internet

worms and network simulators. This research made use of these resources to yield the

speci�cations for creating a network simulator, detailed in Chapters 3 and 4.

It then proposed a series of simulations that would test the operations of a simula-

tor developed according to the speci�cations proposed. The results can be found in

Chapters 5 and 6.

While the simulator presented has adequately completed all of the requirements set

before it (as shown above in Section 7.2), it does not have the resources at the disposal

of the larger network simulators (such as ns-2 or SSFNet, detailed in Section 2.6). It

o�ers features that neither of these simulators have reproduced: using a highly cross-

platform and language-agnostic approach, it allows for scalable network simulations -

but it does not have the large component/plugin sets that these simulators can boast.

It has been e�ective in the rapid development of plugins and simulations, and has

been shown to be extensible via the grid prototyping, discussed in Section 4.4. It has

also been shown as e�ective in running large simulations, representing millions of hosts
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(albeit via abstraction using network nodes) over the course of tens of millions of ticks.

These simulations have accurately depicted the expected results - the results of Internet

worms have been compared to the expected results and found to match closely.

Section 7.2 compares the expectations of the research to the achievements, and �nds

that the research in this work can be considered a success.

7.4 Extensions

Due to the modular nature of the simulator, extensions in terms of simulations are

very simple to suggest: any form of network research can be investigated using the

simulator to test hypotheses. However, the challenge in further development of the

simulation engine itself is also imperative.

Simulations which logically extend the research in Internet worm simulation that

could be used might include:

• The development of cutting-edge countermeasures simulations added to the sys-

tem for testing and evaluation (such as increasing the focus on tarpits and RBLs

and network telescopes)

• Testing various novel worm concepts and existing concepts which were out of the

scope of this document (such as crypt-virii, �ashworms, and bot-nets)

• Using existing worm datasets to test and calibrate the accuracy of the simulator

against real-world data. Captures of real world worm tra�c are available from

organisations such as CAIDA (see Cooperative Association for Internet Data

Analysis (2008b)), however there are limitations in accessing these given the

scarcity of connectivity in South Africa, and the datasets are very large.

Extensions to the simulator that could result in further extensions to the work include

the following:

• The simulator has been designed to operate upon a grid (which is part of the

design concept), but was never properly implemented beyond the prototype dis-

cussed in Section 4.4 due to time and technical constraints. By adding additional

grid capability to the simulator (by o�oading additional processing and optimis-

ing grid memory distribution), further grid development will increase the memory

capacity and processing power available to simulations.

• The initial concept for the simulator included a GUI design. This was later

discarded as a secondary priority, but would add a layer of user-friendliness and

usability that would make the system more useful to non-developers.
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• Constructing more diverse plugins for packaging with the simulator will make

simulations even easier to run for researchers. The existing plugins are su�cient

for worm research and basic IPv4 testing, but lower and higher level protocol

plugins would make other research simpler.

Finally, an additional avenue of research, which Section 6.8 shows was not considered

in this document, was to compare e�ciency and scalability of this simulator with those

of other simulators.

These extensions are all within the scope of a capable developer or researcher, while

providing valuable additions to the network simulator described in this document.

7.5 Applications of This Work

This document and the simulator that it describes can provide a valuable set of guide-

lines to network and security professionals and researchers.

The document details the construction of a tool which security or research insti-

tutes could implement for themselves, with optimisations and additional details added

according to their needs. The importance of the robustness of their simulations has

been discussed, and it is hoped that researchers will take the advice into consideration:

robust simulators allows for simple extensions to be rapidly developed outside of the

bounds of simpler, domain-speci�c simulators which are commonly found in academia.

The simulator that is used in this work is also highly applicable to security re-

searchers, particularly in the area of worm research. Commonly used plugins have

already been developed, and due to the simulator's cross-platform nature it is very

easy for other researchers in the �eld to run their simulations, with little thought on

underlying architecture required. It has many example simulations already available,

and it is open-source in order to allow others to learn from the existing work.

Finally, this document itself brings together much research in the �elds of security

and simulation, and shows the importance of simulation as an important research tool

in this �eld.

7.6 Shortcomings

This reseach, while valuable, has several shortcomings that must be acknowledged.

7.6.1 E�ciency

Firstly, while e�ciency of simulation has been maintained, it came at the cost of

accuracy (due to the loss of granularity). This is an expensive trade-o�, which could
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be reduced by more e�cient coding and data structures (particularly, in a more e�cient

memory management system). The grid prototype discussed in Section 4.4 is one way

in which e�ciency has been addressed - further development of distributed processing

is an immediate step towards resolving this shortcoming.

7.6.2 Development

The simulator currently requires .NET or mono development for simulations, even

those using the simplest available plugins. As stated in Section 7.4, the initial concept

for the simulator included a GUI in order to allow non-developers to use the simulator

(despite being limited by the inability to create new plugins).

7.6.3 IPv4 Limitation

The simulator is currently set to only use IPv4 addresses for hosts. This removes

several simulation options (such as OSI layer 1 and 2 simulations). This limitation is

arti�cial, as any research into non-IPv4 networking can easily add such capability, but

the networking at present is not perfectly robust.

7.6.4 Time Scale

Because the simulator operates in abstract `ticks', which bear no resemblance to any

real time period, it is challenging to associate a speci�c time in a simulation with time

in the real world. When testing, this is arti�cally avoided by scaling time to match

known infection spread times, but when performing speculative simulations the results

may di�er signi�cantly.

7.7 Final Summary

In conclusion, it is necessary to restate the importance of simulation in security re-

search. As the broad body of research literature shows, simulation is an imperative part

of the testing and development process, especially in a �eld like security where research

can involve sensitive information which should not be exposed to non-researchers, ele-

ments which are dangerous if directly reproduced, or controlled environments for testing

which are di�cult to create.

The development of simulators which can execute complex simulations which can

be easily extended is preferable to �one-shot� simulations, as research bene�ts from

tools that can be altered to �t the needs of the problems considered. Futhermore,

by constructing plugin architectures that encourage modularity, creation of complex
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network simulations is possible with little e�ort if the required plugins exist or are

similar to existing plugins. Another aspect that is important to these simulators is

e�ciency (to the extent that they can execute a variety of simulations on a researcher's

desktop PC).

The best way to test all of the above attributes of the system is via a load-heavy

series of simulations. An example of this is Internet worm simulation, as worms grow

quickly and a�ect a diverse range of networking components, as well as being well

documented.

A simulator was developed for this research, and showed promising results. A se-

lection of tests in the form of simulations was executed upon the simulator, and the

results show that it does succeeds in simulating known worm behaviour, meeting the

expected outcomes for every simulation.
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Appendix A: Glossary

Connection A component of a computer network which models any form of commu-

nication between two nodes.

Hilbert Curve A fractal space-�lling curve that allows one dimensional data to be

represented in multiple dimensions, while maintaining locality - e�ective in rep-

resenting IP addresses in a square visual while the position of the data retains

signi�cant semantic value.

Host Any node to which information can be addressed.

Internet Worm Malicious software that can propagate without motivation - it requires

tangible interaction with the Internet in order to spread.

IP Internet Protocol, a means of networked communication which uses four octets for

addressing, the basis for the modern Internet.

Malware Malicious software, executable information which can execute code that the

would be detrimental to the system upon which it resides.

Node Any component of a computer network which can transfer information.

OSI The Open Systems Interconnect model of networking explains protocols using a

�stack�. Each layer of the stack is interchangable, with lower layers represent-

ing the communication and physical protocols while high layers represent the

application-speci�c protocols.

Packet In simulated networking, a component that may contain information. In real

networking, a conceptual unit of data transferral which can be part of a larger

�stream� of data, or an isolated single communique.

Simulations A single modeled scenario in which aspects of the real world are depicted,

typically with changes depicted over time. Useful for speculation, plan testing

and prototyping.

Simulator A piece of software that executes simulations, including storing the sim-

ulated components in memory, executing changes upon those components, and

presenting these changes to the user.
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TCP Transmission Control Protocol, a protocol that abstracts �streams� of informa-

tion by using IP as an underlying communication protocol while adding features

to ensure that data is communicated without loss of integrity.

UDP A connectionless alternative protocol to TCP, it sends packets without the ne-

cessity of an abstract �connection�. This results in lower transmission overhead,

but no guarantee of successful transmission.
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Appendix B: Example Results

An example of output from the simulator developed in Chapters 3 and 4 and used in

Chapters 5 and 6 is presented here.

This example output is from a simulation similar to the Blaster worm simulation

(found in Section 6.6.4), with higher latency and much higher modeled worm growth.

The format of the output is described here:

Regular Output

Every time tick in the system, the simulator outputs a line of text to indicate the

current state. The output has the following �elds:

�T:� indicates the current tick of the simulation

�EvCount:� indicates the number of events currently scheduled to be executed. This

will increase exponentially in worm simulations, and is typically almost entirely com-

posed of �send� events.

�TimeDif:� is the di�erence in milliseconds between the completion of the last tick

and the one prior to its execution. This is useful in estimating the remaining time in

a simulation.

Network Logging Output

Periodically, the state of the network is written to �le. This serves as a backup in case of

system failure during critical or lengthly simulations, as well as allowing post-execution

study of the system as it executes. During this time, more information about the

system is gathered and presented to the user. Due to the relatively high cost of writing

large amounts of data to �le, this action is only performed occasionally throughout

a simulation, typically on the third, �fth, tenth, thirtieth, �ftieth, hundredth, three-

hundredth (and so on) ticks.

The �elds in this output are as follows:

�Worm name infections:� indicates the number of fully simulated hosts that the

worm has infected.

�Worm name infections packetsink:� indicates the number of abstracted hosts that

the worm has infected.
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�Scheduler count:� shows the number of events currently scheduled to be executed.

This will increase exponentially in worm simulations, and is typically almost entirely

composed of �send� events.

�Message count:� is the number of messages currently in circulation (i.e. on incoming

or outgoing queues) throughout the system.

�Message from sink count:� is the number of messages that have been sent by the

abstracted network.

�Message from host count:� is the number of messages that have been sent by fully

simulated hosts.

�% messages from hosts:� is the percentage of the total messages that have been sent

by hosts. This is a good measure when testing and debugging various aspects of the

abstracted network nodes.

Simulation Speci�cs

It should be noted that the �setup� event which creates all the nodes and the recurring

worm event is executed at tick 3, and that the ��nish� action and the �failsafe �nish�

action (both of which cease execution of the simulation, the failsafe used in the event

that the ��nish� action fails in some fashion) are added with the setup action.

The long buildup before the event count increases is due to the simulated latency of

the Blaster worm.

T: 1 EvCount: 3 TimeDif: 0

T: 2 EvCount: 3 TimeDif: 3.774

T: 3 EvCount: 103 InfCount: 0 TimeDif: 229.122

--> Logging network state < 3 > <--

---------------------------------------------------

Current information about the system:

Blaster_Red_Infections_PacketSink : 0

Blaster_Red_Infections : 1

Scheduler count: 103

Message count: 1

Message from sink count: 0

Message from host count: 1

% messages from hosts: 100

---------------------------------------------------

T: 4 EvCount: 102 InfCount: 0 TimeDif: 12.342

T: 5 EvCount: 102 InfCount: 0 TimeDif: 0.041

T: 6 EvCount: 102 InfCount: 0 TimeDif: 0.323
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T: 7 EvCount: 102 InfCount: 0 TimeDif: 0.044

T: 8 EvCount: 102 InfCount: 0 TimeDif: 0.045

T: 9 EvCount: 102 InfCount: 0 TimeDif: 0.052

T: 10 EvCount: 102 InfCount: 0 TimeDif: 0.044

--> Logging network state < 10 > <--

---------------------------------------------------

Current information about the system:

Blaster_Red_Infections_PacketSink : 0

Blaster_Red_Infections : 1

Scheduler count: 101

Message count: 1

Message from sink count: 0

Message from host count: 1

% messages from hosts: 100

---------------------------------------------------

T: 11 EvCount: 100 InfCount: 0 TimeDif: 0.476

T: 12 EvCount: 100 InfCount: 0 TimeDif: 0.04

T: 13 EvCount: 100 InfCount: 0 TimeDif: 0.044

[...]

T: 906 EvCount: 1920639 InfCount: 343205 TimeDif: 49082516.863

T: 907 EvCount: 1992617 InfCount: 355395 TimeDif: 52358467.866

T: 908 EvCount: 2067530 InfCount: 368012 TimeDif: 56816139.746

T: 909 EvCount: 2145767 InfCount: 381037 TimeDif: 59607466.733

T: 910 EvCount: 2225760 InfCount: 394569 TimeDif: 66807330.115

[...]
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Appendix C: Simulator Software

and Plugins

The software used for this research may be found at http://snrg.ict.ru.ac.za/projects/graphsim-

a-robust-network-simulator/. It is developed using monodevelop1, and executes upon

the open-source project �mono�2.

A selection of developed plugins are shown below, with development testing and

debugging plugins (which are unstable) marked by italics:

Node plugins

DefaultNode A default node which does nothing

IPv4 An abstract node representing any IPv4-addressable node

IPv4Node An implementation of the IPv4 abstract node, this was used for the

majority of early simulations

InfectableHost A node representing any IPv4-addressable node capable of worm

infection

PacketSink An early conceptual �network node� which performed no operations

on any incoming packets

IPv4_Partial_Node A `leaf' node of a tree used for storing nodes in memory

for quick access

IPv4_Full_Node A `parent' node of a tree used for storing nodes in memory

for quick access

SimpleNode A simple IPv4 node used in later simulations

Node The generic name for standard nodes used in later simulations, it could

perform simple routing and was infectable by Internet worms

NetworkNode The generic name for standard network nodes used in later sim-

ulations, it accepted and logged incoming worm packets

Connection plugins

1http://monodevelop.com
2http://www.mono-project.com
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DefaultConn A default connection which does nothing

ImmedConn A simple connection object used in early debugging that sent pack-

ets without any form of queue or delay in transfer

DelayConn A connection object that implemented a random delay via packet

queues

IPv4Conn A connection betweeen two IPv4-addressable nodes, otherwise similar

to an ImmedConn

Conn The generic name for standard network connection used in later simula-

tions, it immediately sent packets, using no queueing mechanism by using

the queues in the sending/receiving nodes, because latency was implemented

by action modules

Packet plugins

DefaultPacket A default packet which does nothing

IPv4Packet A standard packet with IPv4 �from� and �to� address �elds

Packet The generic name for network packets, these also used IPv4 �from� and

�to� �elds, and were very similar to IPv4Packets

Action plugins

DefaultAction A default action which does nothing

BasicSend This plugin was developed in the early stages of simulation devel-

opment to test the communication framework. It sends a packet using a

DelayConn

BasicReceive This plugin was developed in the early stages of simulation de-

velopment to test the communication framework. It receives a packet that

had previously been sent via BasicSend that is enqueued on a DelayConn

NRSend/RNSend/NNSend/NISend These plugins were used for early routing

prototyping. The pre�xed letter couple uses N to represent nodes, R for

router, and I for Internet (or network node). The �rst letter indicates the

sender of the packet, the second letter the receiver of the packet.

LogEvent This plugin was used throughout the debugging phase to write de-

tailed system states to �le, enabling in-depth study of the operations of the

simulator.

Setup A catch-all plugin which is overridden for each simulation, it creates the

structure of the network using other plugins and queues the �rst round of

actions that are to be executed
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Finish A catch-all plugin which is overridden for each simulation, it stops the

execution engine and, if necessary, write the �nal state of the network to an

output - either �le, or to the console

Worm A plugin that represents a worm. Every time this action executes, it

iterates through every infected node, enqueueing worm packets that are

generated according to the worm scanning algorithm speci�ed, and then

adds a new instance of itself to the scheduler in the nearby future
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